| 1. |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin, 2022, 72(1): 7-33.
|
| 2. |
Zhang Y, Song J, Zhao Z, et al. Single-cell transcriptome analysis reveals tumor immune microenvironment heterogenicity and granulocytes enrichment in colorectal cancer liver metastases. Cancer Lett, 2020, 470: 84-94.
|
| 3. |
朱德祥, 韋燁, 任黎, 等. 中山醫院結直腸癌MDT討論治療策略分析. 中華結直腸疾病電子雜志, 2020, 9(3): 236-239.
|
| 4. |
Liu L, Liu C, Quintero A, et al. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nat Commun, 2019, 10(1): 470.
|
| 5. |
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 1977, 74(12): 5463-5467.
|
| 6. |
Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A, 1977, 74(2): 560-564.
|
| 7. |
Mccombie WR, Mcpherson JD, Mardis ER. Next-generation sequencing technologies. Cold Spring Harb Perspect Med, 2019, 9(11):doi: 10.1101/cshperspect.a036798.
|
| 8. |
van Dijk EL, Jaszczyszyn Y, Naquin D, et al. The third revolution in sequencing technology. Trends Genet, 2018, 34(9): 666-681.
|
| 9. |
Mannarapu M, Dariya B, Bandapalli OR. Application of single-cell sequencing technologies in pancreatic cancer. Mol Cell Biochem, 2021, 476(6): 2429-2437.
|
| 10. |
鄭小翠. 單細胞測序技術在實體瘤研究中的應用進展. 中國癌癥雜志, 2019, 29(7): 535-539.
|
| 11. |
Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet, 2016, 17(3): 175-188.
|
| 12. |
魏穎. 單細胞轉錄組測序在哮喘研究中應用的研究進展. 復旦學報(醫學版), 2021, 48(3): 404-409.
|
| 13. |
王莉, 李曉輝. 單細胞測序技術在動脈粥樣硬化研究中的研究進展. 醫學研究生學報, 2021, 34(9): 969-973.
|
| 14. |
操利超, 巴穎, 張核子. 單細胞測序方法研究進展. 生物信息學, 2022, 20(2): 91-99.
|
| 15. |
Song Y, Xu X, Wang W, et al. Single cell transcriptomics: moving towards multi-omics. Analyst, 2019, 144(10): 3172-3189.
|
| 16. |
Evrony GD, Hinch AG, Luo C. Applications of single-cell DNA sequencing. Annu Rev Genomics Hum Genet, 2021, 22: 171-197.
|
| 17. |
Feng Y, Zhang Y, Ying C, et al. Nanopore-based fourth-generation DNA sequencing technology. Genomics Proteomics Bioinformatics, 2015, 13(1): 4-16.
|
| 18. |
Olsen TK, Baryawno N. Introduction to Single-Cell RNA Sequencing. Curr Protoc Mol Biol, 2018, 122(1): e57. doi: 10.1002/cpmb.57.
|
| 19. |
Yasen A, Aini A, Wang H, et al. Progress and applications of single-cell sequencing techniques. Infect Genet Evol, 2020, 80: 104198. doi: 10.1016/j.meegid.2020.104198.
|
| 20. |
王權, 王鑄, 張振, 等. 單細胞測序的技術概述. 中國醫藥導刊, 2020, 22(7): 433-439.
|
| 21. |
Harada A, Kimura H, Ohkawa Y. Recent advances in single-cell epigenomics. Curr Opin Struct Biol, 2021, 71: 116-122.
|
| 22. |
程馨, 燕蕊, 郭帆. 單細胞多組學技術新進展及其在發育生物學研究中的應用. 中國科學:生命科學, 2021, 51(5): 496-506.
|
| 23. |
Macaulay IC, Haerty W, Kumar P, et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods, 2015, 12(6): 519-522.
|
| 24. |
Li H, Courtois ET, Sengupta D, et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet, 2017, 49(5): 708-718.
|
| 25. |
Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 2009, 6(5): 377-382.
|
| 26. |
Bass AJ, Lawrence MS, Brace LE, et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat Genet, 2011, 43(10): 964-968.
|
| 27. |
Yu C, Yu J, Yao X, et al. Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res, 2014, 24(6): 701-712.
|
| 28. |
Zhao J, Chen Y. Systematic identification of cancer-associated-fibroblast-derived genes in patients with colorectal cancer based on single-cell sequencing and transcriptomics. Front Immunol, 2022, 13: 988246. doi: 10.3389/fimmu.2022.988246.
|
| 29. |
Dai W, Zhou F, Tang D, et al. Single-cell transcriptional profiling reveals the heterogenicity in colorectal cancer. Medicine (Baltimore), 2019, 98(34): e16916. doi: 10.1097/MD.0000000000016916.
|
| 30. |
Zhou Y, Bian S, Zhou X, et al. Single-Cell multiomics sequencing reveals prevalent genomic alterations in tumor stromal cells of human colorectal cancer. Cancer Cell, 2020, 38(6): 818-828.
|
| 31. |
Li C, Sun YD, Yu GY, et al. Integrated omics of metastatic colorectal cancer. Cancer Cell, 2020, 38(5): 734-747.
|
| 32. |
Tsilimigras DI, Brodt P, Clavien PA, et al. Liver metastases. Nat Rev Dis Primers, 2021, 7(1): 27. doi: 10.1038/s41572-021-00261-6.
|
| 33. |
Heitzer E, Auer M, Gasch C, et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res, 2013, 73(10): 2965-2975.
|
| 34. |
Kim TM, Jung SH, An CH, et al. Subclonal genomic architectures of primary and metastatic colorectal cancer based on intratumoral genetic heterogeneity. Clin Cancer Res, 2015, 21(19): 4461-4472.
|
| 35. |
Leung ML, Davis A, Gao R, et al. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res, 2017, 27(8): 1287-1299.
|
| 36. |
Bian S, Hou Y, Zhou X, et al. Single-cell multiomics sequencing and analyses of human colorectal cancer. Science, 2018, 362(6418): 1060-1063.
|
| 37. |
王智鋒. 單細胞全外顯子組測序在轉移性結直腸癌克隆進化中的初步應用. 華南理工大學, 2019.
|
| 38. |
Miyaki M, Iijima T, Konishi M, et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene, 1999, 18(20): 3098-3103.
|
| 39. |
李承君, 和水祥. IL-17在結直腸炎-癌轉變中的作用機制研究進展. 細胞與分子免疫學雜志, 2022, 38(2): 177-182.
|
| 40. |
Wu Y, Yang S, Ma J, et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov, 2022, 12(1): 134-153.
|
| 41. |
Tang J, Tu K, Lu K, et al. Single-cell exome sequencing reveals multiple subclones in metastatic colorectal carcinoma. Genome Med, 2021, 13(1): 148. doi: 10.1186/s13073-021-00962-3.
|
| 42. |
中國醫師協會外科醫師分會, 中華醫學會外科學分會胃腸外科學組, 中華醫學會外科學 分會結直腸外科學組, 等. 中國結直腸癌肝轉移診斷和綜合治療指南(2020版). 中國實用外科雜志, 2021, 41(1): 1-11.
|
| 43. |
Tauriello DV, Calon A, Lonardo E, et al. Determinants of metastatic competency in colorectal cancer. Mol Oncol, 2017, 11(1): 97-119.
|
| 44. |
Kreso A, O'Brien CA, van Galen P, et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science, 2013, 339(6119): 543-548.
|
| 45. |
Jabbari N, Kenerson HL, Lausted C, et al. Modulation of immune checkpoints by chemotherapy in human colorectal liver metastases. Cell Rep Med, 2020, 1(9): 100160. doi: 10.1016/j.xcrm.2020.100160.
|
| 46. |
袁浩, 鐘華戈, 嚴林海, 等. 基于生物信息學分析結直腸癌STIM1高頻突變介導的免疫抵抗模式及其分子機制. 中國癌癥防治雜志, 2020, 12(5): 566-571.
|
| 47. |
付衛, 黃坤蓉, 付敏, 等. CD73在結直腸癌組織中的表達及其與臨床病理參數的關系. 現代腫瘤醫學, 2019, 27(10): 1753-1757.
|
| 48. |
Künzli BM, Bernlochner MI, Rath S, et al. Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer. Purinergic Signal, 2011, 7(2): 231-241.
|
| 49. |
Kim M, Min YK, Jang J, et al. Single-cell RNA sequencing reveals distinct cellular factors for response to immunotherapy targeting CD73 and PD-1 in colorectal cancer. J Immunother Cancer, 2021, 9(7): e002503. doi: 10.1136/jitc-2021-002503.
|
| 50. |
Lin C, Yang H, Zhao W, et al. CTSB+ macrophage repress memory immune hub in the liver metastasis site of colorectal cancer patient revealed by multi-omics analysis. Biochem Biophys Res Commun, 2022, 626: 8-14.
|
| 51. |
馬燕如, 季林華, 童天潁, 等. 基于單細胞RNA測序的結直腸癌預后預測模型的建立和驗證. 上海交通大學學報(醫學版), 2021, 41(2): 159-165.
|