| 1. |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin, 2020, 70(1): 7-30.
|
| 2. |
Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer. Lancet, 2020, 396(10251): 635-648.
|
| 3. |
Takahari D, Mizusawa J, Koizumi W, et al. Validation of the JCOG prognostic index in advanced gastric cancer using individual patient data from the SPIRITS and G-SOX trials. Gastric Cancer, 2017, 20(5): 757-763.
|
| 4. |
馬東. SOX新輔助化療方案聯合胃癌根治術治療進展期胃癌的臨床評價. 醫學理論與實踐, 2020, 33(18): 3032-3034.
|
| 5. |
Chen L, Hao Y, Zhu L, et al. Monocyte to lymphocyte ratio predicts survival in patients with advanced gastric cancer undergoing neoadjuvant chemotherapy. Onco Targets Ther, 2017, 10: 4007-4016.
|
| 6. |
王輝, 孟松, 李超, 等. SOX方案新輔助化療在進展期胃癌中的療效. 臨床醫學研究與實踐, 2019, 4(8): 7-9.
|
| 7. |
Pavel M, ?berg K, Falconi M, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2020, 31(7): 844-860.
|
| 8. |
中國抗癌協會胃癌專業委員會. 局部進展期胃癌圍手術期治療中國專家共識(2021版). 中華胃腸外科雜志, 2021, 24(9): 741-748.
|
| 9. |
Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada[J]. J Natl Cancer Inst. 2000.92(03): 205-216.
|
| 10. |
Chen C, Dong H, Shou C, et al. The correlation between computed tomography volumetry and prognosis of advanced gastric cancer treated with neoadjuvant chemotherapy. Cancer Manag Res, 2020, 12: 759-768.
|
| 11. |
Chen XL, Pu H, Yin LL, et al. CT volumetry for gastric adenocarcinoma: association with lymphovascular invasion and T-stages. Oncotarget, 2017, 9(15): 12432-12442.
|
| 12. |
Wang ZC, Wang C, Ding Y, et al. CT volumetry can potentially predict the local stage for gastric cancer after chemotherapy. Diagn Interv Radiol, 2017, 23(4): 257-262.
|
| 13. |
Lee SM, Kim SH, Lee JM, et al. Usefulness of CT volumetry for primary gastric lesions in predicting pathologic response to neoadjuvant chemotherapy in advanced gastric cancer. Abdom Imaging, 2009, 34(4): 430-440.
|
| 14. |
Lundsgaard Hansen M, Fallentin E, Lauridsen C, et al. Computed tomography (CT) perfusion as an early predictive marker for treatment response to neoadjuvant chemotherapy in gastroesophageal junction cancer and gastric cancer-a prospective study. PLoS One, 2014, 9(5): e97605. doi: 10.1371/journal.pone.0097605.
|
| 15. |
Giganti F, Antunes S, Salerno A, et al. Gastric cancer: texture analysis from multidetector computed tomography as a potential preoperative prognostic biomarker. Eur Radiol, 2017, 27(5): 1831-1839.
|
| 16. |
Chen CY, Hsu JS, Wu DC, et al. Gastric cancer: preoperative local staging with 3D multi-detector row CT-correlation with surgical and histopathologic results. Radiology, 2007, 242(2): 472-482.
|
| 17. |
Kim SH, Kim SH, Kim MA, et al. CT differentiation of poorly-differentiated gastric neuroendocrine tumours from well-differentiated neuroendocrine tumours and gastric adenocarcinomas. Eur Radiol, 2015, 25(7): 1946-1957.
|
| 18. |
Nie K, Shi L, Chen Q, et al. Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI. Clin Cancer Res, 2016, 22(21): 5256-5264.
|
| 19. |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
|
| 20. |
Limkin EJ, Sun R, Dercle L, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol, 2017, 28(6): 1191-1206.
|
| 21. |
Huang YQ, Liang CH, He L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol, 2016, 34(18): 2157-2164.
|
| 22. |
Choi ER, Lee HY, Jeong JY, et al. Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma. Oncotarget, 2016, 7(41): 67302-67313.
|
| 23. |
Sala E, Mema E, Himoto Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol, 2017, 72(1): 3-10.
|