| 1. |
Dai Q, Jiang W, Liu H, et al. Kupffer cell-targeting strategy for the protection of hepatic ischemia/reperfusion injury. Nanotechnology, 2021 Jan 20. Online ahead of print. doi: 10.1088/1361-6528/abde02.
|
| 2. |
王小瑩, 申麗娟, 劉作金. 細胞焦亡與肝臟缺血再灌注損傷. 重慶醫學, 2019, 48(18): 3184-3187.
|
| 3. |
Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol, 2020, 20(3): 143-157.
|
| 4. |
Li J, Zhao J, Xu M, et al. Blocking GSDMD processing in innate immune cells but not in hepatocytes protects hepatic ischemia-reperfusion injury. Cell Death Dis, 2020, 11(4): 244. doi: 10.1038/s41419-020-2437-9.
|
| 5. |
Kim HY, Kim SJ, Lee SM. Activation of NLRP3 and AIM2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion. FEBS J, 2015, 282(2): 259-270.
|
| 6. |
Weber ANR, Bittner ZA, Shankar S, et al. Recent insights into the regulatory networks of NLRP3 inflammasome activation. J Cell Sci, 2020, 133(23): jcs248344. doi:10.1242/jcs.248344.
|
| 7. |
Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol, 2019, 19(8): 477-489.
|
| 8. |
Zhao N, Li CC, Di B, et al. Recent advances in the NEK7-licensed NLRP3 inflammasome activation: mechanisms, role in diseases and related inhibitors. J Autoimmun, 2020, 113: 102515. doi: 10.1016/j.jaut.2020.102515.
|
| 9. |
Liu G, Chen X, Wang Q, et al. NEK7: a potential therapy target for NLRP3-related diseases. Biosci Trends, 2020, 14(2): 74-82.
|
| 10. |
Vande Walle L, Lamkanfi M. Pyroptosis. Curr Biol, 2016, 26(13): R568-R572.
|
| 11. |
Conos SA, Lawlor KE, Vaux DL, et al. Cell death is not essential for caspase-1-mediated interleukin-1β activation and secretion. Cell Death Differ, 2016, 23(11): 1827-1838.
|
| 12. |
Hafner-Bratkovi? I, Su?jan P, Lain??ek D, et al. NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nat Commun, 2018, 9(1): 5182. doi: 10.1038/s41467-018-07573-4.
|
| 13. |
Karmakar M, Katsnelson M, Malak HA, et al. Neutrophil IL-1β processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+ efflux. J Immunol, 2015, 194(4): 1763-1775.
|
| 14. |
Evavold CL, Ruan J, Tan Y, et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity, 2018, 48(1): 35-44.
|
| 15. |
Li Z, Zhao F, Cao Y, et al. DHA attenuates hepatic ischemia reperfusion injury by inhibiting pyroptosis and activating PI3K/Akt pathway. Eur J Pharmacol, 2018, 835: 1-10.
|
| 16. |
Hua S, Ma M, Fei X, et al. Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated Kupffer cells pyroptosis. Int Immunopharmacol, 2019, 68: 145-155.
|
| 17. |
Zhong W, Rao Z, Rao J, et al. Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated NLRP3 activation in macrophages. Aging Cell, 2020, 19(8): e13186. doi: 10.1111/acel.13186.
|
| 18. |
Lin Q, Li S, Jiang N, et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol, 2019, 26: 101254. doi: 10.1016/j.redox.2019.101254.
|
| 19. |
Xu Y, Tang Y, Lu J, et al. PINK1-mediated mitophagy protects against hepatic ischemia/reperfusion injury by restraining NLRP3 inflammasome activation. Free Radic Biol Med, 2020, 160: 871-886.
|
| 20. |
Lozano-Ruiz B, González-Navajas JM. The emerging relevance of AIM2 in liver disease. Int J Mol Sci, 2020, 21(18): 6535. doi: 10.3390/ijms21186535.
|
| 21. |
Konishi T, Lentsch AB. Hepatic ischemia/reperfusion: mechanisms of tissue injury, repair, and regeneration. Gene Expr, 2017, 17(4): 277-287.
|
| 22. |
Sharma M, de Alba E. Structure, activation and regulation of NLRP3 and AIM2 inflammasomes. Int J Mol Sci, 2021, 22(2): 872. doi: 10.3390/ijms22020872.
|
| 23. |
Lugrin J, Martinon F. The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev, 2018, 281(1): 99-114.
|
| 24. |
Czigany Z, Hata K, Lai W, et al. A dual protective effect of intestinal remote ischemic conditioning in a rat model of total hepatic ischemia. J Clin Med, 2019, 8(10): 1546. doi: 10.3390/jcm8101546.
|
| 25. |
羅炳生, 劉靖華. LPS 的胞內受體 Caspase-11 的研究進展. 生物化學與生物物理進展, 2018, 45(3): 289-296.
|
| 26. |
Abu Khweek A, Amer AO. Pyroptotic and non-pyroptotic effector functions of caspase-11. Immunol Rev, 2020, 297(1): 39-52.
|
| 27. |
Sherif IO, Al-Shaalan NH. Vildagliptin attenuates hepatic ischemia/reperfusion injury via the TLR4/NF-κB signaling pathway. Oxid Med Cell Longev, 2018, 2018: 3509091. doi: 10.1155/2018/3509091.
|
| 28. |
Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575): 666-671.
|
| 29. |
Mazgaeen L, Gurung P. Recent advances in lipopolysaccharide recognition systems. Int J Mol Sci, 2020, 21(2): 379. doi: 10.3390/ijms21020379.
|
| 30. |
Yang D, He Y, Mu?oz-Planillo R, et al. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity, 2015, 43(5): 923-932.
|
| 31. |
Pellegrini C, Antonioli L, Lopez-Castejon G, et al. Canonical and non-canonical activation of NLRP3 inflammasome at the crossroad between immune tolerance and intestinal inflammation. Front Immunol, 2017, 8: 36. doi: 10.3389/fimmu.2017.00036.
|
| 32. |
Yi YS. Functional crosstalk between non-canonical caspase-11 and canonical NLRP3 inflammasomes during infection-mediated inflammation. Immunology, 2020, 159(2): 142-155.
|
| 33. |
Aizawa E, Karasawa T, Watanabe S, et al. GSDME-dependent incomplete pyroptosis permits selective IL-1α release under caspase-1 inhibition. iScience, 2020, 23(5): 101070. doi: 10.1016/j.isci.2020.101070.
|
| 34. |
Mandal P, Feng Y, Lyons JD, et al. Caspase-8 collaborates with caspase-11 to drive tissue damage and execution of endotoxic sh ock. Immunity, 2018, 49(1): 42-55.
|
| 35. |
Zhang L, Liu H, Jia L, et al. Exosomes mediate hippocampal and cortical neuronal injury induced by hepatic ischemia-reperfusion injury through activating pyroptosis in rats. Oxid Med Cell Longev, 2019, 2019: 3753485. doi: 10.1155/2019/3753485.
|
| 36. |
Zhao H, Huang H, Alam A, et al. VEGF mitigates histone-induced pyroptosis in the remote liver injury associated with renal allograft ischemia-reperfusion injury in rats. Am J Transplant, 2018, 18(8): 1890-1903.
|