Citation: 袁放, 馬青松, 宋彬. 肝癌的影像學研究進展及其在多學科診療中的應用. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2021, 28(3): 297-302. doi: 10.7507/1007-9424.202012093 Copy
Copyright ? the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
| 1. | Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet, 2018, 391(10127): 1301-1314. |
| 2. | Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132. |
| 3. | Caruso S, O'Brien DR, Cleary SP, et al. Genetics of HCC: Novel approaches to explore molecular diversity. Hepatology, 2020 May 28. [Online ahead of print]. |
| 4. | 陳孝平, 張志偉. 肝癌多學科綜合治療團隊建立與運作. 中國實用外科雜志, 2014, 34(8): 685-687. |
| 5. | 四川大學華西醫院肝癌MDT團隊, 嚴律南, 文天夫. 肝細胞肝癌全程多學科規范化管理: 華西醫院多學科專家共識(第二版). 中國普外基礎與臨床雜志, 2020, 27(9): 1062-1077. |
| 6. | Brown G. Specialist multidisciplinary team working in the treatment of cancer. BMJ, 2012, 344: e2780. |
| 7. | Yang JD, Heimbach JK. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ, 2020, 371: m3544. |
| 8. | Kudo M. Defect reperfusion imaging with Sonazoid?: a breakthrough in hepatocellular carcinoma. Liver Cancer, 2016, 5(1): 1-7. |
| 9. | Lv P, Lin XZ, Chen K, et al. Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol, 2012, 22(10): 2117-2124. |
| 10. | 胡興和, 王渝. 寶石 CT 能譜成像技術在原發性小肝癌診斷中的臨床應用價值. 實用醫技雜志, 2012, 19(7): 702-703. |
| 11. | Lv P, Lin XZ, Li J, et al. Differentiation of small hepatic hemangioma from small hepatocellular carcinoma: recently introduced spectral CT method. Radiology, 2011, 259(3): 720-729. |
| 12. | Wang Q, Shi G, Qi X, et al. Quantitative analysis of the dual-energy CT virtual spectral curve for focal liver lesions characterization. Eur J Radiol, 2014, 83(10): 1759-1764. |
| 13. | 劉常緒, 張成琪, 王新怡, 等. 能譜 CT 在肝細胞癌與肝內腫塊型膽管細胞癌鑒別診斷中的應用價值. 山東大學學報(醫學版), 2014, 52(12): 94-98. |
| 14. | Liu YS, Chuang MT, Tsai YS, et al. Nitroglycerine use in transcatheter arterial (chemo)embolization in patients with hepatocellular carcinoma and dual-energy CT assessment of Lipiodol retention. Eur Radiol, 2012, 22(10): 2193-2200. |
| 15. | Dai X, Schlemmer HP, Schmidt B, et al. Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Radiol, 2013, 82(2): 327-334. |
| 16. | Park MS, Kim S, Patel J, et al. Hepatocellular carcinoma: detection with diffusion-weighted versus contrast-enhanced magnetic resonance imaging in pretransplant patients. Hepatology, 2012, 56(1): 140-148. |
| 17. | Park MJ, Kim YK, Lee MW, et al. Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns. Radiology, 2012, 264(3): 761-770. |
| 18. | Woo S, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma: correlation with enhancement degree and histologic grade. Radiology, 2014, 270(3): 758-767. |
| 19. | 李玉博, 高雪梅, 程敬亮, 等. 基于體素內不相干運動擴散加權成像在肝細胞癌術前分級中的應用分析. 臨床放射學雜志, 2015, 34(3): 389-393. |
| 20. | Cao L, Chen J, Duan T, et al. Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade. Quant Imaging Med Surg, 2019, 9(4): 590-602. |
| 21. | 曹立坤, 段婷, 陳婕, 等. 擴散峰度成像預測肝細胞癌切除術后早期復發的價值. 四川大學學報(醫學版), 2018, 49(6): 88-93. |
| 22. | Rosenkrantz AB, Sigmund EE, Winnick A, et al. Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: preliminary experience in fresh liver explants. Magn Reson Imaging, 2012, 30(10): 1534-1540. |
| 23. | Guo R, Yang SH, Lu F, et al. Evaluation of intratumoral heterogeneity by using diffusion kurtosis imaging and stretched exponential diffusion-weighted imaging in an orthotopic hepatocellular carcinoma xenograft model. Quant Imaging Med Surg, 2019, 9(9): 1566-1578. |
| 24. | Jia Y, Cai H, Wang M, et al. Diffusion kurtosis MR imaging versus conventional diffusion-weighted imaging for distinguishing hepatocellular carcinoma from benign hepatic nodules. Contrast Media Mol Imaging, 2019, 2019: 2030147. |
| 25. | 劉剛, 李天然, 楊立. 肝癌的影像學研究進展. 前沿科學, 2017, 11(1): 33-48. |
| 26. | Kitao A, Zen Y, Matsui O, et al. Hepatocellular carcinoma: signal intensity at gadoxetic acid-enhanced MR Imaging—correlation with molecular transporters and histopathologic features. Radiology, 2010, 256(3): 817-826. |
| 27. | Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int, 2017, 11(4): 317-370. |
| 28. | Jiang HY, Chen J, Xia CC, et al. Noninvasive imaging of hepatocellular carcinoma: from diagnosis to prognosis. World J Gastroenterol, 2018, 24(22): 2348-2362. |
| 29. | Liu X, Jiang H, Chen J, et al. Gadoxetic acid disodium-enhanced magnetic resonance imaging outperformed multidetector computed tomography in diagnosing small hepatocellular carcinoma: a meta-analysis. Liver Transpl, 2017, 23(12): 1505-1518. |
| 30. | Imai Y, Katayama K, Hori M, et al. Prospective comparison of Gd-EOB-DTPA-enhanced MRI with dynamic CT for detecting recurrence of HCC after radiofrequency ablation. Liver Cancer, 2017, 6(4): 349-359. |
| 31. | Nishie A, Tajima T, Ishigami K, et al. Detection of hepatocellular carcinoma (HCC) using super paramagnetic iron oxide (SPIO)-enhanced MRI: Added value of diffusion-weighted imaging (DWI). J Magn Reson Imaging, 2010, 31(2): 373-382. |
| 32. | Kim YK, Kim CS, Han YM, et al. Comparison of gadoxetic acid-enhanced MRI and superparamagnetic iron oxide-enhanced MRI for the detection of hepatocellular carcinoma. Clin Radiol, 2010, 65(5): 358-365. |
| 33. | Park HS, Lee JM, Kim SH, et al. Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver: value of SPIO-enhanced MR imaging at 3.0 Tesla. J Magn Reson Imaging, 2009, 29(2): 328-335. |
| 34. | 張宏霞, 黎金葵, 王夢書, 等. 磁共振成像技術在肝細胞肝癌的研究進展. 中華肝臟病雜志, 2019, 27(2): 153-156. |
| 35. | An C, Park MS, Kim D, et al. Added value of subtraction imaging in detecting arterial enhancement in small (<3 cm) hepatic nodules on dynamic contrast-enhanced MRI in patients at high risk of hepatocellular carcinoma. Eur Radiol, 2013, 23(4): 924-930. |
| 36. | Rao SX, Chen CZ, Liu H, et al. Three-dimensional whole-liver perfusion magnetic resonance imaging in patients with hepatocellular carcinomas and colorectal hepatic metastases. BMC Gastroenterol, 2013, 13: 53. |
| 37. | Patterson AJ, Priest AN, Bowden DJ, et al. Quantitative BOLD imaging at 3T: temporal changes in hepatocellular carcinoma and fibrosis following oxygen challenge. J Magn Reson Imaging, 2016, 44(3): 739-744. |
| 38. | Bane O, Besa C, Wagner M, et al. Feasibility and reproducibility of BOLD and TOLD measurements in the liver with oxygen and carbogen gas challenge in healthy volunteers and patients with hepatocellular carcinoma. J Magn Reson Imaging, 2016, 43(4): 866-876. |
| 39. | Yuan F, Song B, Huang Z, et al. Glucose as a stimulation agent in the BOLD functional magnetic resonance imaging for liver cirrhosis and hepatocellular carcinoma: a feasibility study. Abdom Radiol (NY), 2018, 43(3): 607-612. |
| 40. | Mathew RP, Venkatesh SK. Imaging of hepatic fibrosis. Curr Gastroenterol Rep, 2018, 20(10): 45. |
| 41. | 鄭興菊, 鄭捷, 孫家瑜, 等. 磁共振 T1ρ 成像在原發性肝癌診斷中應用的初步探索. 中國普外基礎與臨床雜志, 2015, 22(6): 743-745. |
| 42. | 陳鵬, 趙衛東, 張紅宇, 等. 肝細胞癌患者 1.5 T 氫質子磁共振波譜分析. 中國癌癥雜志, 2010, 20(1): 55-58. |
| 43. | 岳倩倩, 王新怡. MRI 功能成像在小肝癌診斷中的應用進展. 中華消化病與影像雜志(電子版), 2016, 6(4): 180-183. |
| 44. | Wilson SR, Lyshchik A, Piscaglia F, et al. CEUS LI-RADS: algorithm, implementation, and key differences from CT/MRI. Abdom Radiol (NY), 2018, 43(1): 127-142. |
| 45. | Chernyak V, Santillan CS, Papadatos D, et al. LI-RADS? algorithm: CT and MRI. Abdom Radiol (NY), 2018, 43(1): 111-126. |
| 46. | Tang A, Fowler KJ, Chernyak V, et al. LI-RADS and transplantation for hepatocellular carcinoma. Abdom Radiol (NY), 2018, 43(1): 193-202. |
| 47. | Choi SH, Lee SS, Park SH, et al. LI-RADS classification and prognosis of primary liver cancers at gadoxetic acid-enhanced MRI. Radiology, 2019, 290(2): 388-397. |
| 48. | Renzulli M, Clemente A, Brocchi S, et al. LI-RADS: a great opportunity not to be missed. Eur J Gastroenterol Hepatol, 2019, 31(3): 283-288. |
| 49. | Elsayes KM, Fowler KJ, Chernyak V, et al. User and system pitfalls in liver imaging with LI-RADS. J Magn Reson Imaging, 2019, 50(6): 1673-1686. |
| 50. | Chernyak V, Fowler KJ, Kamaya A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology, 2018, 289(3): 816-830. |
| 51. | Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 2018, 68(2): 723-750. |
| 52. | Baumann M, H?lscher T, Begg AC. Towards genetic prediction of radiation responses: ESTRO’s GENEPI project. Radiother Oncol, 2003, 69(2): 121-125. |
| 53. | Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446. |
| 54. | 胡文墨, 楊華瑜, 毛一雷. 基于人工智能的影像組學在肝臟疾病中的應用. 中華普通外科雜志, 2019, 34(7): 646-648. |
| 55. | Raman SP, Schroeder JL, Huang P, et al. Preliminary data using computed tomography texture analysis for the classification of hypervascular liver lesions: generation of a predictive model on the basis of quantitative spatial frequency measurements—a work in progress. J Comput Assist Tomogr, 2015, 39(3): 383-395. |
| 56. | Canellas R, Mehrkhani F, Patino M, et al. Characterization of portal vein thrombosis (neoplastic versus bland) on CT images using software-based texture analysis and thrombus density (hounsfield units). AJR Am J Roentgenol, 2016, 207(5): W81-W87. |
| 57. | Bakr S, Echegaray S, Shah R, et al. Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study. J Med Imaging (Bellingham), 2017, 4(4): 041303. |
| 58. | Feng ST, Jia Y, Liao B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI. Eur Radiol, 2019, 29(9): 4648-4659. |
| 59. | Ma X, Wei J, Gu D, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur Radiol, 2019, 29(7): 3595-3605. |
| 60. | Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol, 2019, 70(6): 1133-1144. |
| 61. | Yang L, Gu D, Wei J, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Liver Cancer, 2019, 8(5): 373-386. |
| 62. | 韓玉齊, 魏靖偉, 蔣涵羽, 等. 影像組學研究進展及其在肝癌中的臨床應用. 中國科學: 生命科學, 2020, 50(11): 1309-1320. |
| 63. | Li M, Fu S, Zhu Y, et al. Computed tomography texture analysis to facilitate therapeutic decision making in hepatocellular carcinoma. Oncotarget, 2016, 7(11): 13248-13259. |
| 64. | Bowen SR, Chapman TR, Borgman J, et al. Measuring total liver function on sulfur colloid SPECT/CT for improved risk stratification and outcome prediction of hepatocellular carcinoma patients. EJNMMI Res, 2016, 6(1): 57. |
| 65. | Fu S, Chen S, Liang C, et al. Texture analysis of intermediate-advanced hepatocellular carcinoma: prognosis and patients’ selection of transcatheter arterial chemoembolization and sorafenib. Oncotarget, 2017, 8(23): 37855-37865. |
| 66. | Villa E, Critelli R, Lei B, et al. Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study. Gut, 2016, 65(5): 861-869. |
| 67. | European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol, 2012, 56(4): 908-943. |
| 68. | Lee SM, Lee JM, Ahn SJ, et al. LI-RADS version 2017 versus version 2018: diagnosis of hepatocellular carcinoma on gadoxetate disodium-enhanced MRI. Radiology, 2019, 292(3): 655-663. |
| 69. | Fu S, Wei J, Zhang J, et al. Selection between liver resection versus transarterial chemoembolization in hepatocellular carcinoma: a multicenter study. Clin Transl Gastroenterol, 2019, 10(8): e00070. |
| 70. | Akai H, Yasaka K, Kunimatsu A, et al. Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest. Diagn Interv Imaging, 2018, 99(10): 643-651. |
| 71. | 金玉梅, 宋彬, 黃子星. 肝細胞癌微血管侵犯的分子影像學研究進展. 中國普外基礎與臨床雜志, 2019, 26(5): 602-605. |
| 72. | De Robertis R, Tinazzi Martini P, Demozzi E, et al. Prognostication and response assessment in liver and pancreatic tumors: the new imaging. World J Gastroenterol, 2015, 21(22): 6794-6808. |
| 73. | Taouli B, Johnson RS, Hajdu CH, et al. Hepatocellular carcinoma: perfusion quantification with dynamic contrast-enhanced MRI. AJR Am J Roentgenol, 2013, 201(4): 795-800. |
| 74. | Yuan ZG, Wang ZY, Xia MY, et al. Comparison of diffusion kurtosis imaging versus diffusion weighted imaging in predicting the recurrence of early stage single nodules of hepatocellular carcinoma treated by radiofrequency ablation. Cancer Imaging, 2019, 19(1): 30. |
| 75. | Li B, Xu A, Huang Y, et al. Oxygen-challenge blood oxygen level-dependent magnetic resonance imaging for evaluation of early change of hepatocellular carcinoma to chemoembolization: A Feasibility Study. Acad Radiol, 2020: S1076-6332(20)30371-8. |
| 76. | Zhang LJ, Zhang Z, Xu J, et al. Carbogen gas-challenge blood oxygen level-dependent magnetic resonance imaging in hepatocellular carcinoma: Initial results. Oncol Lett, 2015, 10(4): 2009-2014. |
- 1. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet, 2018, 391(10127): 1301-1314.
- 2. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
- 3. Caruso S, O'Brien DR, Cleary SP, et al. Genetics of HCC: Novel approaches to explore molecular diversity. Hepatology, 2020 May 28. [Online ahead of print].
- 4. 陳孝平, 張志偉. 肝癌多學科綜合治療團隊建立與運作. 中國實用外科雜志, 2014, 34(8): 685-687.
- 5. 四川大學華西醫院肝癌MDT團隊, 嚴律南, 文天夫. 肝細胞肝癌全程多學科規范化管理: 華西醫院多學科專家共識(第二版). 中國普外基礎與臨床雜志, 2020, 27(9): 1062-1077.
- 6. Brown G. Specialist multidisciplinary team working in the treatment of cancer. BMJ, 2012, 344: e2780.
- 7. Yang JD, Heimbach JK. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ, 2020, 371: m3544.
- 8. Kudo M. Defect reperfusion imaging with Sonazoid?: a breakthrough in hepatocellular carcinoma. Liver Cancer, 2016, 5(1): 1-7.
- 9. Lv P, Lin XZ, Chen K, et al. Spectral CT in patients with small HCC: investigation of image quality and diagnostic accuracy. Eur Radiol, 2012, 22(10): 2117-2124.
- 10. 胡興和, 王渝. 寶石 CT 能譜成像技術在原發性小肝癌診斷中的臨床應用價值. 實用醫技雜志, 2012, 19(7): 702-703.
- 11. Lv P, Lin XZ, Li J, et al. Differentiation of small hepatic hemangioma from small hepatocellular carcinoma: recently introduced spectral CT method. Radiology, 2011, 259(3): 720-729.
- 12. Wang Q, Shi G, Qi X, et al. Quantitative analysis of the dual-energy CT virtual spectral curve for focal liver lesions characterization. Eur J Radiol, 2014, 83(10): 1759-1764.
- 13. 劉常緒, 張成琪, 王新怡, 等. 能譜 CT 在肝細胞癌與肝內腫塊型膽管細胞癌鑒別診斷中的應用價值. 山東大學學報(醫學版), 2014, 52(12): 94-98.
- 14. Liu YS, Chuang MT, Tsai YS, et al. Nitroglycerine use in transcatheter arterial (chemo)embolization in patients with hepatocellular carcinoma and dual-energy CT assessment of Lipiodol retention. Eur Radiol, 2012, 22(10): 2193-2200.
- 15. Dai X, Schlemmer HP, Schmidt B, et al. Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Radiol, 2013, 82(2): 327-334.
- 16. Park MS, Kim S, Patel J, et al. Hepatocellular carcinoma: detection with diffusion-weighted versus contrast-enhanced magnetic resonance imaging in pretransplant patients. Hepatology, 2012, 56(1): 140-148.
- 17. Park MJ, Kim YK, Lee MW, et al. Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns. Radiology, 2012, 264(3): 761-770.
- 18. Woo S, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma: correlation with enhancement degree and histologic grade. Radiology, 2014, 270(3): 758-767.
- 19. 李玉博, 高雪梅, 程敬亮, 等. 基于體素內不相干運動擴散加權成像在肝細胞癌術前分級中的應用分析. 臨床放射學雜志, 2015, 34(3): 389-393.
- 20. Cao L, Chen J, Duan T, et al. Diffusion kurtosis imaging (DKI) of hepatocellular carcinoma: correlation with microvascular invasion and histologic grade. Quant Imaging Med Surg, 2019, 9(4): 590-602.
- 21. 曹立坤, 段婷, 陳婕, 等. 擴散峰度成像預測肝細胞癌切除術后早期復發的價值. 四川大學學報(醫學版), 2018, 49(6): 88-93.
- 22. Rosenkrantz AB, Sigmund EE, Winnick A, et al. Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: preliminary experience in fresh liver explants. Magn Reson Imaging, 2012, 30(10): 1534-1540.
- 23. Guo R, Yang SH, Lu F, et al. Evaluation of intratumoral heterogeneity by using diffusion kurtosis imaging and stretched exponential diffusion-weighted imaging in an orthotopic hepatocellular carcinoma xenograft model. Quant Imaging Med Surg, 2019, 9(9): 1566-1578.
- 24. Jia Y, Cai H, Wang M, et al. Diffusion kurtosis MR imaging versus conventional diffusion-weighted imaging for distinguishing hepatocellular carcinoma from benign hepatic nodules. Contrast Media Mol Imaging, 2019, 2019: 2030147.
- 25. 劉剛, 李天然, 楊立. 肝癌的影像學研究進展. 前沿科學, 2017, 11(1): 33-48.
- 26. Kitao A, Zen Y, Matsui O, et al. Hepatocellular carcinoma: signal intensity at gadoxetic acid-enhanced MR Imaging—correlation with molecular transporters and histopathologic features. Radiology, 2010, 256(3): 817-826.
- 27. Omata M, Cheng AL, Kokudo N, et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int, 2017, 11(4): 317-370.
- 28. Jiang HY, Chen J, Xia CC, et al. Noninvasive imaging of hepatocellular carcinoma: from diagnosis to prognosis. World J Gastroenterol, 2018, 24(22): 2348-2362.
- 29. Liu X, Jiang H, Chen J, et al. Gadoxetic acid disodium-enhanced magnetic resonance imaging outperformed multidetector computed tomography in diagnosing small hepatocellular carcinoma: a meta-analysis. Liver Transpl, 2017, 23(12): 1505-1518.
- 30. Imai Y, Katayama K, Hori M, et al. Prospective comparison of Gd-EOB-DTPA-enhanced MRI with dynamic CT for detecting recurrence of HCC after radiofrequency ablation. Liver Cancer, 2017, 6(4): 349-359.
- 31. Nishie A, Tajima T, Ishigami K, et al. Detection of hepatocellular carcinoma (HCC) using super paramagnetic iron oxide (SPIO)-enhanced MRI: Added value of diffusion-weighted imaging (DWI). J Magn Reson Imaging, 2010, 31(2): 373-382.
- 32. Kim YK, Kim CS, Han YM, et al. Comparison of gadoxetic acid-enhanced MRI and superparamagnetic iron oxide-enhanced MRI for the detection of hepatocellular carcinoma. Clin Radiol, 2010, 65(5): 358-365.
- 33. Park HS, Lee JM, Kim SH, et al. Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver: value of SPIO-enhanced MR imaging at 3.0 Tesla. J Magn Reson Imaging, 2009, 29(2): 328-335.
- 34. 張宏霞, 黎金葵, 王夢書, 等. 磁共振成像技術在肝細胞肝癌的研究進展. 中華肝臟病雜志, 2019, 27(2): 153-156.
- 35. An C, Park MS, Kim D, et al. Added value of subtraction imaging in detecting arterial enhancement in small (<3 cm) hepatic nodules on dynamic contrast-enhanced MRI in patients at high risk of hepatocellular carcinoma. Eur Radiol, 2013, 23(4): 924-930.
- 36. Rao SX, Chen CZ, Liu H, et al. Three-dimensional whole-liver perfusion magnetic resonance imaging in patients with hepatocellular carcinomas and colorectal hepatic metastases. BMC Gastroenterol, 2013, 13: 53.
- 37. Patterson AJ, Priest AN, Bowden DJ, et al. Quantitative BOLD imaging at 3T: temporal changes in hepatocellular carcinoma and fibrosis following oxygen challenge. J Magn Reson Imaging, 2016, 44(3): 739-744.
- 38. Bane O, Besa C, Wagner M, et al. Feasibility and reproducibility of BOLD and TOLD measurements in the liver with oxygen and carbogen gas challenge in healthy volunteers and patients with hepatocellular carcinoma. J Magn Reson Imaging, 2016, 43(4): 866-876.
- 39. Yuan F, Song B, Huang Z, et al. Glucose as a stimulation agent in the BOLD functional magnetic resonance imaging for liver cirrhosis and hepatocellular carcinoma: a feasibility study. Abdom Radiol (NY), 2018, 43(3): 607-612.
- 40. Mathew RP, Venkatesh SK. Imaging of hepatic fibrosis. Curr Gastroenterol Rep, 2018, 20(10): 45.
- 41. 鄭興菊, 鄭捷, 孫家瑜, 等. 磁共振 T1ρ 成像在原發性肝癌診斷中應用的初步探索. 中國普外基礎與臨床雜志, 2015, 22(6): 743-745.
- 42. 陳鵬, 趙衛東, 張紅宇, 等. 肝細胞癌患者 1.5 T 氫質子磁共振波譜分析. 中國癌癥雜志, 2010, 20(1): 55-58.
- 43. 岳倩倩, 王新怡. MRI 功能成像在小肝癌診斷中的應用進展. 中華消化病與影像雜志(電子版), 2016, 6(4): 180-183.
- 44. Wilson SR, Lyshchik A, Piscaglia F, et al. CEUS LI-RADS: algorithm, implementation, and key differences from CT/MRI. Abdom Radiol (NY), 2018, 43(1): 127-142.
- 45. Chernyak V, Santillan CS, Papadatos D, et al. LI-RADS? algorithm: CT and MRI. Abdom Radiol (NY), 2018, 43(1): 111-126.
- 46. Tang A, Fowler KJ, Chernyak V, et al. LI-RADS and transplantation for hepatocellular carcinoma. Abdom Radiol (NY), 2018, 43(1): 193-202.
- 47. Choi SH, Lee SS, Park SH, et al. LI-RADS classification and prognosis of primary liver cancers at gadoxetic acid-enhanced MRI. Radiology, 2019, 290(2): 388-397.
- 48. Renzulli M, Clemente A, Brocchi S, et al. LI-RADS: a great opportunity not to be missed. Eur J Gastroenterol Hepatol, 2019, 31(3): 283-288.
- 49. Elsayes KM, Fowler KJ, Chernyak V, et al. User and system pitfalls in liver imaging with LI-RADS. J Magn Reson Imaging, 2019, 50(6): 1673-1686.
- 50. Chernyak V, Fowler KJ, Kamaya A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology, 2018, 289(3): 816-830.
- 51. Marrero JA, Kulik LM, Sirlin CB, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 2018, 68(2): 723-750.
- 52. Baumann M, H?lscher T, Begg AC. Towards genetic prediction of radiation responses: ESTRO’s GENEPI project. Radiother Oncol, 2003, 69(2): 121-125.
- 53. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
- 54. 胡文墨, 楊華瑜, 毛一雷. 基于人工智能的影像組學在肝臟疾病中的應用. 中華普通外科雜志, 2019, 34(7): 646-648.
- 55. Raman SP, Schroeder JL, Huang P, et al. Preliminary data using computed tomography texture analysis for the classification of hypervascular liver lesions: generation of a predictive model on the basis of quantitative spatial frequency measurements—a work in progress. J Comput Assist Tomogr, 2015, 39(3): 383-395.
- 56. Canellas R, Mehrkhani F, Patino M, et al. Characterization of portal vein thrombosis (neoplastic versus bland) on CT images using software-based texture analysis and thrombus density (hounsfield units). AJR Am J Roentgenol, 2016, 207(5): W81-W87.
- 57. Bakr S, Echegaray S, Shah R, et al. Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study. J Med Imaging (Bellingham), 2017, 4(4): 041303.
- 58. Feng ST, Jia Y, Liao B, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI. Eur Radiol, 2019, 29(9): 4648-4659.
- 59. Ma X, Wei J, Gu D, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur Radiol, 2019, 29(7): 3595-3605.
- 60. Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol, 2019, 70(6): 1133-1144.
- 61. Yang L, Gu D, Wei J, et al. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma. Liver Cancer, 2019, 8(5): 373-386.
- 62. 韓玉齊, 魏靖偉, 蔣涵羽, 等. 影像組學研究進展及其在肝癌中的臨床應用. 中國科學: 生命科學, 2020, 50(11): 1309-1320.
- 63. Li M, Fu S, Zhu Y, et al. Computed tomography texture analysis to facilitate therapeutic decision making in hepatocellular carcinoma. Oncotarget, 2016, 7(11): 13248-13259.
- 64. Bowen SR, Chapman TR, Borgman J, et al. Measuring total liver function on sulfur colloid SPECT/CT for improved risk stratification and outcome prediction of hepatocellular carcinoma patients. EJNMMI Res, 2016, 6(1): 57.
- 65. Fu S, Chen S, Liang C, et al. Texture analysis of intermediate-advanced hepatocellular carcinoma: prognosis and patients’ selection of transcatheter arterial chemoembolization and sorafenib. Oncotarget, 2017, 8(23): 37855-37865.
- 66. Villa E, Critelli R, Lei B, et al. Neoangiogenesis-related genes are hallmarks of fast-growing hepatocellular carcinomas and worst survival. Results from a prospective study. Gut, 2016, 65(5): 861-869.
- 67. European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol, 2012, 56(4): 908-943.
- 68. Lee SM, Lee JM, Ahn SJ, et al. LI-RADS version 2017 versus version 2018: diagnosis of hepatocellular carcinoma on gadoxetate disodium-enhanced MRI. Radiology, 2019, 292(3): 655-663.
- 69. Fu S, Wei J, Zhang J, et al. Selection between liver resection versus transarterial chemoembolization in hepatocellular carcinoma: a multicenter study. Clin Transl Gastroenterol, 2019, 10(8): e00070.
- 70. Akai H, Yasaka K, Kunimatsu A, et al. Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest. Diagn Interv Imaging, 2018, 99(10): 643-651.
- 71. 金玉梅, 宋彬, 黃子星. 肝細胞癌微血管侵犯的分子影像學研究進展. 中國普外基礎與臨床雜志, 2019, 26(5): 602-605.
- 72. De Robertis R, Tinazzi Martini P, Demozzi E, et al. Prognostication and response assessment in liver and pancreatic tumors: the new imaging. World J Gastroenterol, 2015, 21(22): 6794-6808.
- 73. Taouli B, Johnson RS, Hajdu CH, et al. Hepatocellular carcinoma: perfusion quantification with dynamic contrast-enhanced MRI. AJR Am J Roentgenol, 2013, 201(4): 795-800.
- 74. Yuan ZG, Wang ZY, Xia MY, et al. Comparison of diffusion kurtosis imaging versus diffusion weighted imaging in predicting the recurrence of early stage single nodules of hepatocellular carcinoma treated by radiofrequency ablation. Cancer Imaging, 2019, 19(1): 30.
- 75. Li B, Xu A, Huang Y, et al. Oxygen-challenge blood oxygen level-dependent magnetic resonance imaging for evaluation of early change of hepatocellular carcinoma to chemoembolization: A Feasibility Study. Acad Radiol, 2020: S1076-6332(20)30371-8.
- 76. Zhang LJ, Zhang Z, Xu J, et al. Carbogen gas-challenge blood oxygen level-dependent magnetic resonance imaging in hepatocellular carcinoma: Initial results. Oncol Lett, 2015, 10(4): 2009-2014.

