| 1. |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
|
| 2. |
Obermannova R, Redova-Lojova M, Vychytilova-Faltejskova P, et al. Tumor expression of miR-10b, miR-21, miR-143 and miR-145 is related to clinicopathological features of gastric cancer in a central European population. Anticancer Res, 2018, 38(6): 3719-3724.
|
| 3. |
Jiang X, Wang W, Yang Y, et al. Identification of circulating microRNA signatures as potential noninvasive biomarkers for prediction and prognosis of lymph node metastasis in gastric cancer. Oncotarget, 2017, 8(39): 65132-65142.
|
| 4. |
Wang F, Liu J, Zou Y, et al. MicroRNA-143-3p, up-regulated in H. pylori-positive gastric cancer, suppresses tumor growth, migration and invasion by directly targeting AKT2. Oncotarget, 2017, 8(17): 28711-28724.
|
| 5. |
邢曉芳, 李子禹. miR-143和miR-145在胃癌中的表達及功能研究. 中華胃腸外科雜志, 2015, 18(1): 50-53.
|
| 6. |
Guo B, Li J, Liu L, et al. Dysregulation of miRNAs and their potential as biomarkers for the diagnosis of gastric cancer. Biomed Rep, 2013, 1(6): 907-912.
|
| 7. |
李海龍, 宋耀輝, 陳兆峰, 等. miR-20a-5p/miR-20b-5p在胃癌細胞和組織中的表達及調控靶基因信號通路富集分析. 臨床檢驗雜志, 2017, 35(11): 822-827.
|
| 8. |
郗洪慶, 張珂誠, 衛勃, 等. 胃癌TNM分期第八版更新在臨床診斷治療中的意義和思考. 中華胃腸外科雜志, 2017, 20(2): 166-170.
|
| 9. |
康博雄, 李海龍, 陳徹, 等. miR-106a-5p在胃癌細胞和胃癌組織中的表達及其調控靶基因信號通路富集分析. 中國普外基礎與臨床雜志, 2018, 25(8): 923-928.
|
| 10. |
Li H, Xie S, Liu M, et al. The clinical significance of down-regulation of mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p in gastric cancer tumorigenesis. Int J Oncol, 2014, 45(1): 197-208.
|
| 11. |
Li X, Luo F, Li Q, et al. Identification of new aberrantly expressed miRNAs in intestinal-type gastric cancer and its clinical significance. Oncol Rep, 2011, 26(6): 1431-1439.
|
| 12. |
Zhou LL, Dong JL, Huang G, et al. MicroRNA-143 inhibits cell growth by targeting ERK5 and MAP3K7 in breast cancer. Braz J Med Biol Res, 2017, 50(8): e5891.
|
| 13. |
Jin YP, Hu YP, Wu XS, et al. miR-143-3p targeting of ITGA6 suppresses tumour growth and angiogenesis by downregulating PLGF expression via the PI3K/AKT pathway in gallbladder carcinoma. Cell Death Dis, 2018, 9(2): 182.
|
| 14. |
Dong X, Lv B, Li Y, et al. MiR-143 regulates the proliferation and migration of osteosarcoma cells through targeting MAPK7. Arch Biochem Biophys, 2017, 630: 47-53.
|
| 15. |
Sun X, Dai G, Yu L, et al. miR-143-3p inhibits the proliferation, migration and invasion in osteosarcoma by targeting FOSL2. Sci Rep, 2018, 8(1): 606.
|
| 16. |
Shi H, Shen H, Xu J, et al. MiR-143-3p suppresses the progression of ovarian cancer. Am J Transl Res, 2018, 10(3): 866-874.
|
| 17. |
Panza E, Ercolano G, De Cicco P, et al. MicroRNA-143-3p inhibits growth and invasiveness of melanoma cells by targeting cyclooxygenase-2 and inversely correlates with malignant melanoma progression. Biochem Pharmacol, 2018, 156: 52-59.
|
| 18. |
Huang SJ, Zhu YF, Liu Z, et al. Study of miR-143 expression in stomach cancer. Oncol Lett, 2018, 16(4): 4367-4371.
|
| 19. |
梁瑩, 葉延程, 張文華, 等. 2008~2012年甘肅省武威市涼州區胃癌發病與死亡分析. 中國腫瘤, 2016, 25(7): 519-523.
|
| 20. |
Lei C, Du F, Sun L, et al. miR-143 and miR-145 inhibit gastric cancer cell migration and metastasis by suppressing MYO6. Cell Death Dis, 2017, 8(10): e3101.
|
| 21. |
Zhang Q, Feng Y, Liu P, et al. MiR-143 inhibits cell proliferation and invasion by targeting DNMT3A in gastric cancer. Tumour Biol, 2017, 39(7): 1010428317711312.
|
| 22. |
Wu XL, Cheng B, Li PY, et al. MicroRNA-143 suppresses gastric cancer cell growth and induces apoptosis by targeting COX-2. World J Gastroenterol, 2013, 19(43): 7758-7765.
|
| 23. |
Guoping M, Ran L, Yanru Q. miR-143 inhibits cell proliferation of gastric cancer cells through targeting GATA6. Oncol Res, 2018, 26(7): 1023-1029.
|
| 24. |
Zhuang M, Shi Q, Zhang X, et al. Involvement of miR-143 in cisplatin resistance of gastric cancer cells via targeting IGF1R and BCL2. Tumour Biol, 2015, 36(4): 2737-2745.
|
| 25. |
Xu B, Niu X, Zhang X, et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem, 2011, 350(1-2): 207-213.
|