| 1. |
尹昊智, 劉鐵志. 人工智能各國戰略解讀: 美國人工智能報告解析. 電信網技術, 2017, (2): 52-57.
|
| 2. |
陳真誠, 蔣勇, 胥明玉, 等. 人工智能技術及其在醫學診斷中的應用及發展. 生物醫學工程學雜志, 2002, 19(3): 505-509.
|
| 3. |
Bibault JE, Zapletal E, Rance B, et al. Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology. PLoS One, 2018, 13(1): e0191263.
|
| 4. |
Lee SI, Celik S, Logsdon BA, et al. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun, 2018, 9(1): 42.
|
| 5. |
Molino G. A computer-based approach to education and training in clinical gastroenterology. Scand J Gastroenterol Suppl, 1991, 189: 27-29.
|
| 6. |
Molino G, Ripa Di Meana V, Torchio M, et al. Educational applications of a knowledge-based expert system for medical decision making in hepatology. Ital J Gastroenterol, 1990, 22(2): 97-104.
|
| 7. |
Kayaalp M, Cooper GF, Clermont G. Predicting ICU mortality: a comparison of stationary and nonstationary temporal models. Proc AMIA Symp, 2000, 418-422.
|
| 8. |
彭承宏, 趙舒霖, 金佳斌. 腹腔鏡及機器人技術在肝臟惡性腫瘤治療中的應用及評價. 中國實用外科雜志, 2016, (06): 610-614.
|
| 9. |
聶金福. 人工智能在生物醫療領域的應用和機遇. 軟件和集成電路, 2017, (04): 38-41.
|
| 10. |
Gheonea DI, Streba CT, Vere CC, et al. Diagnosis system for hepatocellular carcinoma based on fractal dimension of morphometric elements integrated in an artificial neural network. Biomed Res Int, 2014, 2014: 239706.
|
| 11. |
張露, 叢冠寧, 楊小麗, 等. 多腫瘤標志物蛋白質芯片檢測系統結合人工智能在肝癌診斷研究中的初步評價. 中國醫藥導刊, 2003, 5(1): 35-37.
|
| 12. |
方馳華, 周五一, 黃立偉, 等. 虛擬中國人女性一號肝臟圖像三維重建和虛擬手術的切割. 中華外科雜志, 2005, 43(11): 748-752.
|
| 13. |
魏東慶, 劉景豐. 虛擬可視化肝臟的研究和臨床應用現狀. 肝膽外科雜志, 2011, 19(3): 238-239.
|
| 14. |
閆建平, 黃樞. 醫學影像技術在肝臟虛擬手術的應用. 東南國防醫藥, 2013, (06): 610-611+619.
|
| 15. |
周五一, 方馳華, 黃立偉, 等. 肝臟管道灌注后數字化虛擬肝臟及其手術. 第四軍醫大學學報, 2006, 27(8): 712-716.
|
| 16. |
王曉穎. 機器人肝切除應用價值與評價. 中國實用外科雜志, 2016, 36(11): 1155-1158.
|
| 17. |
張雯雯, 王宏光, 紀文斌, 等. 機器人肝切除技術的優勢和弊端. 肝膽外科雜志, 2016, 24(1): 14-18.
|
| 18. |
張楠, 李濤. 微創外科技術的新進展. 醫療衛生裝備, 2010, 31(9): 10, 12.
|
| 19. |
王宏光, 紀文斌. 機器人肝尾狀葉切除. 中華肝臟外科手術學電子雜志, 2017, 6(3): 181-186.
|
| 20. |
Cruz-Ramírez M, Hervás-Martínez C, Fernández JC, et al. Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks. Artif Intell Med, 2013, 58(1): 37-49.
|
| 21. |
Lau L, Kankanige Y, Rubinstein B, et al. Machine-learning algorithms predict graft failure after liver transplantation. Transplantation, 2017, 101(4): e125-e132.
|
| 22. |
洪曉丹, 李碧虹, 羅美娟, 等. 肝移植受者他克莫司血藥濃度早期預測方案及評估. 中國醫院藥學雜志, 2013, 33(5): 381-385.
|
| 23. |
Brice?o J, Cruz-Ramírez M, Prieto M, et al. Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: results from a multicenter Spanish study. J Hepatol, 2014, 61(5): 1020-1028.
|
| 24. |
Dorado-Moreno M, Pérez-Ortiz M, Gutiérrez PA, et al. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Artif Intell Med, 2017, 77: 1-11.
|
| 25. |
Qiao G, Li J, Huang A, et al. Artificial neural networking model for the prediction of post-hepatectomy survival of patients with early hepatocellular carcinoma. J Gastroenterol Hepatol, 2014, 29(12): 2014-2020.
|
| 26. |
Chiu HC, Ho TW, Lee KT, et al. Mortality predicted accuracy for hepatocellular carcinoma patients with hepatic resection using artificial neural network. Sci World J, 2013, 2013: 201976.
|
| 27. |
Shi HY, Lee KT, Wang JJ, et al. Artificial neural network model for predicting 5-year mortality after surgery for hepatocellular carcinoma: a nationwide study. J Gastrointest Surg, 2012, 16(11): 2126-2131.
|