| 1. |
Herrero R, Park JY, Forman D. The fight against gastric cancer—the IARC Working Group report. Best Pract Res Clin Gastroenterol, 2014, 28(6): 1107-1114.
|
| 2. |
朱海濤, 趙宜良, 吳云飛, 等. 胃癌各組淋巴結的轉移特點及其在實施合理根治術中的指導意義. 中華腫瘤雜志, 2008, 30(11): 863-865.
|
| 3. |
Deng J, Liang H, Sun D, et al. Suitability of 7th UICC N stage for predicting the overall survival of gastric cancer patients after curative resection in China. Ann Surg Oncol, 2010, 17(5): 1259-1266.
|
| 4. |
Saito H, Fukumoto Y, Osaki T, et al. Prognostic significance of level and number of lymph node metastases in patients with gastric cancer. Ann Surg Oncol, 2007, 14(5): 1688-1693.
|
| 5. |
Fiorito S, Serafino A, Andreola F, et al. Toxicity and biocompatibility of carbon nanoparticles. J Nanosci Nanotechnol, 2006, 6(3): 591-599.
|
| 6. |
郭文斌, 高偉, 劉金濤, 等. 納米碳對乳腺癌腋窩前哨淋巴結活檢的應用價值. 中國普通外科雜志, 2012, 21(11): 1346-1349.
|
| 7. |
Li Y, Jian WH, Guo ZM, et al. A meta-analysis of carbon nanoparticles for identifying lymph nodes and protecting parathyroid glands during surgery. Otolaryngol Head Neck Surg, 2015, 152(6): 1007-1016.
|
| 8. |
Utsav M. Literature survey on carbon nanotubes and their potential applications in cancer treatment. IEEE, 2014, 12(5): 18-21.
|
| 9. |
Guven A, Rusakova IA, Lewis MT, et al. Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials, 2012, 33(5): 1455-1461.
|
| 10. |
Hong SY, Tobias G, Al-Jamal KT, et al. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater, 2010, 9(6): 485-490.
|
| 11. |
Yamashita T, Yamashita K, Nabeshi H, et al. Carbon nanomaterials: efficacy and safety for nanomedicine. Materials (Basel), 2012, 5(2): 350-363.
|
| 12. |
Karchemski F, Zucker D, Barenholz Y, et al. Carbon nanotubes-liposomes conjugate as a platform for drug delivery into cells. J Control Release, 2012, 160(2): 339-345.
|
| 13. |
Behnam B, Shier WT, Nia AH, et al. Non-covalent functionalization of single-walled carbon nanotubes with modified polyethyleneimines for efficient gene delivery. Int J Pharm, 2013, 454(1): 204-215.
|
| 14. |
Sun H, She P, Lu GL, et al. Recent advances in the development of functionalized carbon nanotubes: a versatile vector for drug delivery. J Mater Sci, 2014, 49(20): 6845-6854.
|
| 15. |
Jain KK. Advances in use of functionalized carbon nanotubes for drug design and discovery. Expert Opin Drug Discov, 2012, 7(11): 1029-1037.
|
| 16. |
Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond), 2012, 7(8): 1253-1271.
|
| 17. |
Ravelli D, Merli D, Quartarone E, et al. PEGylated carbon nanotubes: preparation, properties and applications. RSC Adv, 2013, 33(3): 13569-13582.
|
| 18. |
Razzazan A, Atyabi F, Kazemi B, et al. In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater Sci Eng C Mater Biol Appl, 2016, 62: 614-625.
|
| 19. |
Wen S, Liu H, Cai H, et al. Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Adv Healthc Mater, 2013, 2(9): 1267-1276.
|
| 20. |
Shearer CJ, Yu L, Fenati R, et al. Adsorption and desorption of single-stranded DNA from single-walled carbon nanotubes. Chem Asian J, 2017, 12(13): 1625-1634.
|
| 21. |
Boyer PD, Ganesh S, Qin Z, et al. Delivering single-walled carbon nanotubes to the nucleus using engineered nuclear protein domains. ACS Appl Mater Interfaces, 2016, 8(5): 3524-3534.
|
| 22. |
Mu Q, Broughton DL, Yan B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett, 2009, 9(12): 4370-4375.
|
| 23. |
Karimi M, Solati N, Ghasemi A, et al. Carbon nanotubes part Ⅱ: a remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv, 2015, 12(7): 1089-1105.
|
| 24. |
Dong J, Porter DW, Batteli LA, et al. Pathologic and molecular profiling of rapid-onset fibrosis and inflammation induced by multi-walled carbon nanotubes. Arch Toxicol, 2015, 89(4): 621-633.
|
| 25. |
Stueckle TA, Davidson DC, Derk R, et al. Effect of surface functionalizations of multi-walled carbon nanotubes on neoplastic transformation potential in primary human lung epithelial cells. Nanotoxicology, 2017, 11(5): 613-624.
|
| 26. |
Qin Y, Li S, Zhao G, et al. Long-term intravenous administration of carboxylated single-walled carbon nanotubes induces persistent accumulation in the lungs and pulmonary fibrosis via the nuclear factor-kappa B pathway. Int J Nanomedicine, 2016, 12: 263-277.
|
| 27. |
Pondman KM, Paudyal B, Sim RB, et al. Pulmonary surfactant protein SP-D opsonises carbon nanotubes and augments their phagocytosis and subsequent pro-inflammatory immune response. Nanoscale, 2017, 9(3): 1097-1109.
|
| 28. |
Morimoto Y, Hirohashi M, Ogami A, et al. Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology, 2012, 6(6): 587-599.
|
| 29. |
Saha D, Heldt CL, Gencoglu MF, et al. A study on the cytotoxicity of carbon-based materials. Mater Sci Eng C Mater Biol Appl, 2016, 68: 101-108.
|
| 30. |
Zhang T, Tang M, Zhang S, et al. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study. Int J Nanomedicine, 2017, 12: 1539-1554.
|
| 31. |
Hussain S, Ji Z, Taylor AJ, et al. Multiwalled carbon nanotube functionalization with high molecular weight hyaluronan significantly reduces pulmonary injury. ACS Nano, 2016, 10(8): 7675-7688.
|
| 32. |
葛現才, 周巖冰, 徐憲輝, 等. 納米碳示蹤技術在腹腔鏡結腸癌根治術中的應用. 中國普通外科雜志, 2017, 26(4): 494-500.
|
| 33. |
Wu X, Lin Q, Chen G, et al. Sentinel lymph node detection using carbon nanoparticles in patients with early breast cancer. PLoS One, 2015, 10(8): e0135714.
|
| 34. |
Xu XF, Gu J. The application of carbon nanoparticles in the lymph node biopsy of cN0 papillary thyroid carcinoma: A randomized controlled clinical trial. Asian J Surg, 2017, 40(5): 345-349.
|
| 35. |
Alatengbaolide, Lin D, Li Y, et al. Lymph node ratio is an independent prognostic factor in gastric cancer after curative resection (R0) regardless of the examined number of lymph nodes. Am J Clin Oncol, 2013, 36(4): 325-330.
|
| 36. |
Kaibara N, Otani Y, Inoue H, et al. Meeting report of the 76th Congress of the Japanese Gastric Cancer Association. Gastric Cancer, 2004, 7(4): 185-195.
|
| 37. |
蘇力夫, 張生彬, 朱永蒙. 納米碳示蹤前哨淋巴結在 cNO 甲狀腺乳頭狀癌中的應用. 中國現代醫學雜志, 2013, 23(7): 110-112.
|
| 38. |
陳鴻源, 王亞楠, 薛芳沁, 等. 腹腔鏡下靜脈輸液針注射法納米碳淋巴示蹤技術在胃癌根治術中的應用. 中華胃腸外科雜志, 2014, 17(5): 457-460.
|
| 39. |
Wang H, Chen MM, Zhu GS, et al. Lymph node mapping with carbon nanoparticles and the risk factors of lymph node metastasis in gastric cancer. J Huazhong Univ Sci Technolog Med Sci (Medical Sciences), 2016, 36(6): 865-870.
|
| 40. |
李天梁, 李蜀華, 冷尉, 等. 納米碳淋巴示蹤劑術前胃鏡下注射與術中注射在胃癌根治術中的對照研究. 疑難病雜志, 2015, 14(10): 1047-1049.
|
| 41. |
Park JY, Kim YW, Ryu KW, et al. Assessment of laparoscopic stomach preserving surgery with sentinel basin dissection versus standard gastrectomy with lymphadenectomy in early gastric cancer-A multicenter randomized phase Ⅲ clinical trial (SENORITA trial) protocol. BMC Cancer, 2016, 16: 340.
|
| 42. |
Yan J, Zheng X, Liu Z, et al. A multicenter study of using carbon nanoparticles to show sentinel lymph nodes in early gastric cancer. Surg Endosc, 2016, 30(4): 1294-1300.
|
| 43. |
任瑋, 張松, 王萌, 等. 前哨淋巴結導航技術在早期胃癌內鏡非治愈性切除后腹腔鏡處理中的應用價值. 中華消化內鏡雜志, 2016, 33(12): 826-828.
|
| 44. |
Mieog JS, Troyan SL, Hutteman M, et al. Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann Surg Oncol, 2011, 18(9): 2483-2491.
|
| 45. |
程科, 莊競, 李保東, 等. 納米碳淋巴示蹤劑在腹腔鏡輔助下進展期胃癌根治術中的應用及評價. 中國普外基礎與臨床雜志, 2016, 23(12): 1460-1463.
|
| 46. |
Feng J, Wu YF, Xu HM, et al. Prognostic significance of the metastatic lymph node ratio in T3 gastric cancer patients undergoing total gastrectomy. Asian Pac J Cancer Prev, 2011, 12(12): 3289-3292.
|
| 47. |
時俊霞, 王孝蘭, 師丙帥. 淋巴結比率對胃癌患者的預后價值分析. 消化腫瘤雜志 (電子版), 2015, 7(1): 9-13.
|
| 48. |
de Steur WO, Hartgrink HH, Dikken JL, et al. Quality control of lymph node dissection in the Dutch Gastric Cancer Trial. Br J Surg, 2015, 102(11): 1388-1393.
|
| 49. |
張志棟, 劉慶偉, 李勇, 等. 納米炭在局部進展期胃癌術前化療后淋巴結檢獲中的應用價值. 中國全科醫學, 2016, 19(2): 179-183.
|
| 50. |
Li Z, Ao S, Bu Z, et al. Clinical study of harvesting lymph nodes with carbon nanoparticles in advanced gastric cancer: a prospective randomized trial. World J Surg Oncol, 2016, 14: 88.
|
| 51. |
Kushwaha SK, Rastogi A, Rai AK, et al. Novel drug delivery system for anticancer drug: A review. Int J Pharm Res, 2012, 4(2): 542-553.
|
| 52. |
Vashist SK, Zheng D, Pastorin G, et al. Delivery of drugs and biomolecules using carbon nanotubes. Carbon, 2011, 49(13): 4077-4097.
|
| 53. |
Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release, 2015, 200: 138-157.
|
| 54. |
Li Z, de Barros ALB, Soares DCF, et al. Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int J Pharm, 2017, 524(1-2): 41-54.
|
| 55. |
Hashemzadeh H, Raissi H. The functionalization of carbon nanotubes to enhance the efficacy of the anticancer drug paclitaxel: a molecular dynamics simulation study. J Mol Model, 2017, 23(8): 222.
|
| 56. |
Wong BS, Yoong SL, Jagusiak A, et al. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev, 2013, 65(15): 1964-2015.
|
| 57. |
Hou L, Zhang H, Wang Y, et al. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent. Int J Nanomedicine, 2015, 10: 4507-4520.
|
| 58. |
Shao W, Paul A, Zhao B, et al. Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials, 2013, 34(38): 10109-10119.
|
| 59. |
Tahermansouri H, Aryanfar Y, Biazar E. Synthesis, characterization, and the influence of functionalized multi-walled carbon nanotubes with creatinine and 2-aminobenzophenone on the gastric cancer cells. Bulletin- Korean Chem Soc, 2013, 34: 149-153 .
|
| 60. |
Tahermansouri H, Ghobadinejad H. Functionalization of short multi-walled carbon nanotubes with creatinine and aromatic aldehydes via microwave and thermal methods and their influence on the MKN48 and MCF7 cancer cells. C R Chimie, 2013, 16(9): 838-844.
|
| 61. |
Ghasemvand F, Biazar E, Tavakolifard S, et al. Synthesis and evaluation of multi-wall carbon nanotube-paclitaxel complex as an anti-cancer agent. Gastroenterol Hepatol Bed Bench, 2016, 9(3): 197-204.
|
| 62. |
Yao HJ, Zhang YG, Sun L, et al. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials, 2014, 35(33): 9208-9223.
|
| 63. |
Nakamura K, Iinuma H, Aoyagi Y, et al. Predictive value of cancer stem-like cells and cancer-associated genetic markers for peritoneal recurrence of colorectal cancer in patients after curative surgery. Oncology, 2010, 78(5-6): 309-315.
|
| 64. |
Sun M, Zhou W, Zhang YY, et al. CD44+ gastric cancer cells with stemness properties are chemoradioresistant and highly invasive. Oncol Lett, 2013, 5(6): 1793-1798.
|
| 65. |
Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release, 2008, 132(3): 164-170.
|
| 66. |
Taghavi S, Nia AH, Abnous K, et al. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int J Pharm, 2017, 516(1-2): 301-312.
|
| 67. |
Guven A, Villares GJ, Hilsenbeck SG, et al. Carbon nanotube capsules enhance the in vivo efficacy of cisplatin. Acta Biomaterialia, 2017, 58: 466-478.
|