1. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2. |
唐旭, 王瑾, 周文生, 等. 基于循環腫瘤DNA液體活檢監測分子殘留病灶在非小細胞肺癌診療中的應用進展. 中國胸心血管外科臨床雜志, 2025.Epub ahead of print]. Tang X, Wang J, Zhou WS, et al. Application progress of circulating tumor DNA liquid biopsy in monitoring minimal residual disease in non-small cell lung cancer. Chin J Clin Thorac Cardiovasc Surg, 2025, [Epub ahead of print].
|
3. |
Minami Y. The notable topics of the 5th edition of WHO classification for the thoracic tumours (2021). Gan To Kagaku Ryoho, 2022, 49(8): 847-852.
|
4. |
Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol, 2016, 11(1): 39-51.
|
5. |
Liu Y, Gao Y, Wu Y, et al. Autoantibodies as potential liquid biopsy biomarker in detection of pancreatic cancer: a diagnostic test accuracy review and meta-analysis. Scand J Immunol, 2025, 101(4): e70012.
|
6. |
Ouyang R, Wu S, Zhang B, et al. Clinical value of tumor-associated antigens and autoantibody panel combination detection in the early diagnostic of lung cancer. Cancer Biomark, 2021, 32(3): 401-409.
|
7. |
Graeve VIJ, Laures S, Spirig A, et al. Implementation of an AI algorithm in clinical practice to reduce missed incidental pulmonary embolisms on chest CT and its impact on short-term survival. Invest Radiol, 2025, 60(4): 260-266.
|
8. |
桑亞麗, 宋麗沙, 彭明月, 等. 肺癌患者血清中外泌體潛在自身抗體標志物的研究進展. 內蒙古醫學雜志, 2025, 57(5): 569-573.Sang YL, Song LS, Peng MY, et al. Research progress on potential autoantibody markers in serum exosomes of lung cancer patients. Inner Mongol Med J, 2025, 57(5): 569-573.
|
9. |
孫碩, 王鋒, 何立, 等. 液體活檢生物標志物及其聯合影像學在肺癌早期診斷中應用的研究進展. 中國胸心血管外科臨床雜志, 2023, 30(2): 313-319.Sun S, Wang F, He L, et al. Research progress on liquid biopsy biomarkers and their combination with imaging in the early diagnosis of lung cancer. Chin J Clin Thorac Cardiovasc Surg, 2023, 30(2): 313-319.
|
10. |
王冰, 邱紅. 腫瘤標志物在肺癌診斷中的研究進展. 國際檢驗醫學雜志, 2013, 34(24): 3384-3386.Wang B, Qiu H. Research progress on tumor markers in the diagnosis of lung cancer. Int J Lab Med, 2013, 34(24): 3384-3386.
|
11. |
王柳倩, 馬為. 腫瘤標志物在肺癌的早期診斷及預后評估中的研究進展. 現代腫瘤醫學, 2014, 22(12): 3004-3007.Wang LQ, Ma W. Research progress on tumor markers in early diagnosis and prognosis evaluation of lung cancer. J Mod Oncol, 2014, 22(12): 3004-3007.
|
12. |
吳東霞, 沈溪明. 腫瘤標志物在肺癌早期診斷與治療中的價值. 吉林醫學, 2016, 37(8): 1976-1977.Wu DX, Shen XM. The value of tumor markers in the early diagnosis and treatment of lung cancer. Jilin Med J, 2016, 37(8): 1976-1977.
|
13. |
Xu Y, Zhang W, Xia T, et al. Diagnostic value of tumor-associated autoantibodies panel in combination with traditional tumor markers for lung cancer. Front Oncol, 2023, 13: 1022331.
|
14. |
周瀟, 鄒強, 張巖. 7項腫瘤相關抗原自身抗體在不同分期非小細胞肺癌診斷中臨床意義. 臨床軍醫雜志, 2022, 50(9): 922-925.Zhou X, Zou Q, Zhang Y. Clinical significance of seven tumor-associated antigen autoantibodies in the diagnosis of non-small cell lung cancer at different stages. J Clin Military Surgeon, 2022, 50(9): 922-925.
|
15. |
Tong L, Sun J, Zhang X, et al. Development of an autoantibody panel for early detection of lung cancer in the Chinese population. Front Med (Lausanne), 2023, 10: 1209747.
|
16. |
張少華, 杜文水. 人血清涎液化糖鏈抗原磁微粒化學發光免疫分析方法的建立及對肺癌的診斷價值. 醫療裝備, 2024, 37(1): 95-101.Zhang SH, Du WS. Establishment of a magnetic particle chemiluminescence immunoassay for human serum sialylated glycoprotein antigen and its diagnostic value for lung cancer. Med Equipment, 2024, 37(1): 95-101.
|
17. |
He T, Wu Z, Xia P, et al. The combination of a seven-autoantibody panel with computed tomography scanning can enhance the diagnostic efficiency of non-small cell lung cancer. Front Oncol, 2022, 12: 1047019.
|
18. |
Qin J, Zeng N, Yang T, et al. Diagnostic value of autoantibodies in lung cancer: a systematic review and meta-analysis. Cell Physiol Biochem, 2018, 51(6): 2631-2646.
|
19. |
Xie F, Xu L, Mu Y, et al. Diagnostic value of seven autoantibodies combined with CEA and CA199 in non-small cell lung cancer. Clin Lab, 2023, 69(5): 789-795.
|
20. |
Mu YY, Xie FY, Wang FB, et al. Performance evaluation of an enzyme-linked immunosorbent assay for seven autoantibodies in lung cancer. Clin Lab, 2019, 65(4): 475-482.
|
21. |
Chen Q, Zhu S, Jiao N, et al. Improvement in the performance of an autoantibody panel in combination with heat shock protein 90a for the detection of early-stage lung cancer. Exp Ther Med, 2023, 25(2): 82.
|
22. |
Veronesi G, Bianchi F, Infante M, et al. The challenge of small lung nodules identified in CT screening: can biomarkers assist diagnosis? Biomark Med, 2016, 10(2): 137-143.
|
23. |
Chapman CJ, Healey GF, Murray A, et al. EarlyCDT-Lung test: improved clinical utility through additional autoantibody assays. Tumour Biol, 2012, 33(5): 1319-1326.
|
24. |
Jett JR, Peek LJ, Fredericks L, et al. Audit of the autoantibody test, EarlyCDT-Lung, in 1600 patients: an evaluation of its performance in routine clinical practice. Lung Cancer, 2014, 83(1): 51-55.
|
25. |
Massion PP, Healey GF, Peek LJ, et al. Autoantibody signature enhances the positive predictive power of computed tomography and nodule-based risk models for detection of lung cancer. J Thorac Oncol, 2017, 12(3): 578-584.
|
26. |
Ren S, Zhang S, Jiang T, et al. Early detection of lung cancer by using an autoantibody panel in Chinese population. Oncoimmunology, 2018, 7(2): e1384108.
|
27. |
Zhang R, Ma L, Li W, et al. Diagnostic value of multiple tumor-associated autoantibodies in lung cancer. Onco Targets Ther, 2019, 12: 457-469.
|
28. |
Huang H, Luo W, Ni Y, et al. The diagnostic efficiency of seven autoantibodies in lung cancer. Eur J Cancer Prev, 2020, 29(4): 315-320.
|
29. |
羅國慶, 盧瀟, 李定慧, 等. 2024年第5版《NCCN腫瘤臨床實踐指南: 非小細胞肺癌》更新解讀. 中國胸心血管外科臨床雜志, 2024, 31(7): 955-961.Luo GQ, Lu X, Li DH, et al. Interpretation of the updated NCCN clinical practice guidelines in oncology: non-small cell lung cancer (version 5. 2024). Chin J Clin Thorac Cardiovasc Surg, 2024, 31(7): 955-961.
|
30. |
王家樂, 邱天羽, 崔亞男, 等. 2024 CSCO非小細胞肺癌指南(晚期部分)解讀. 同濟大學學報(醫學版), 2024, 45(4): 465-470.Wang JL, Qiu TY, Cui YN, et al. Interpretation of the 2024 CSCO non-small cell lung cancer guidelines (advanced stage). J Tongji Univ (Med Sci), 2024, 45(4): 465-470.
|
31. |
Jiang P, Wang K, Wei Y, et al. Serum autoantibody-based biomarkers for prognosis in early-stage lung cancer patients with surgical resection. Biomarkers, 2025, 30(2): 131-139.
|
32. |
張守宇, 陳勃江, 李為民. 人工智能在肺癌早期診斷與精準治療中的應用與挑戰. 腫瘤防治研究, 2024, 51(12): 1000-1006.Zhang SY, Chen BJ, Li WM. Application and challenges of artificial intelligence in the early diagnosis and precision treatment of lung cancer. Cancer Res Prev Treat, 2024, 51(12): 1000-1006.
|
33. |
Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci, 2020, 111(5): 1452-1460.
|
34. |
Li C, Yan Y, Lin W, et al. Enhancing cancer subtype classification through convolutional neural networks: a deepinsight analysis of TCGA gene expression data. Health Inf Sci Syst, 2025, 13(1): 33.
|
35. |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
|
36. |
Zwanenburg A, Vallieres M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology, 2020, 295(2): 328-338.
|
37. |
Tuminello S, Flores R, Untalan M, et al. Predicted effect of incidental pulmonary nodule findings on NSCLC mortality. J Thorac Oncol, 2025, 20(3): 273-284.
|
38. |
Liu JA, Yang IY, Tsai EB. Artificial intelligence (AI) for lung nodules, from the AJR special series on AI applications. AJR Am J Roentgenol, 2022, 219(5): 703-712.
|
39. |
Boubnovski Martell M, Linton-Reid K, Chen M, et al. Radiomics for lung cancer diagnosis, management, and future prospects. Clin Radiol, 2025, 86: 106926.
|
40. |
Hendrix W, Hendrix N, Scholten ET, et al. Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans. Commun Med (Lond), 2023, 3(1): 156.
|
41. |
Vyas A, Kumar K, Sharma A, et al. Advancing the frontier of artificial intelligence on emerging technologies to redefine cancer diagnosis and care. Comput Biol Med, 2025, 191: 110178.
|
42. |
苗光, 李朝鋒. 二維和三維卷積神經網絡相結合的CT圖像肺結節檢測方法. 激光與光電子學進展, 2018, 55(5): 135-143.Miao G, Li CF. Lung nodule detection method in CT images combining two-dimensional and three-dimensional convolutional neural networks. Laser Optoelectron Prog, 2018, 55(5): 135-143.
|
43. |
Li R, Xiao C, Huang Y, et al. Deep learning applications in computed tomography images for pulmonary nodule detection and diagnosis: a review. Diagnostics (Basel), 2022, 12(2): 489.
|
44. |
Yoo H, Kim KH, Singh R, et al. Validation of a deep learning algorithm for the detection of malignant pulmonary nodules in chest radiographs. JAMA Netw Open, 2020, 3(9): e2017135.
|
45. |
Chassagnon G, de Margerie-Mellon C, Vakalopoulou M, et al. Artificial intelligence in lung cancer: current applications and perspectives. Jpn J Radiol, 2023, 41(3): 235-244.
|
46. |
van Riel SJ, Ciompi F, Winkler Wille MM, et al. Malignancy risk estimation of pulmonary nodules in screening CTs: comparison between a computer model and human observers. PLoS One, 2017, 12(11): e0185032.
|
47. |
Mikhael PG, Wohlwend J, Yala A, et al. Sybil: a validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography. J Clin Oncol, 2023, 41(12): 2191-2200.
|
48. |
Schneider BJ, Ismaila N, Aerts J, et al. Lung cancer surveillance after definitive curative-intent therapy: ASCO guideline. J Clin Oncol, 2020, 38(7): 753-766.
|
49. |
Park J, Rho MJ, Moon MH. Enhanced deep learning model for precise nodule localization and recurrence risk prediction following curative-intent surgery for lung cancer. PLoS One, 2024, 19(7): e0300442.
|
50. |
Chen J, Wee L, Dekker A, et al. Using 3D deep features from CT scans for cancer prognosis based on a video classification model: a multi-dataset feasibility study. Med Phys, 2023, 50(7): 4220-4233.
|
51. |
Gong J, Liu J, Li H, et al. Deep learning-based stage-wise risk stratification for early lung adenocarcinoma in CT images: a multi-center study. Cancers (Basel), 2021, 13(13): 3326.
|
52. |
Wang W, Zhuang R, Ma H, et al. The diagnostic value of a seven-autoantibody panel and a nomogram with a scoring table for predicting the risk of non-small-cell lung cancer. Cancer Sci, 2020, 111(5): 1699-1710.
|
53. |
桂國華, 暢龍, 胡炎興, 等. 血清CEA、Dickkopf-1檢測聯合低劑量螺旋CT掃描在肺癌早期診斷中的價值分析. 中國CT和MRI雜志, 2022, 20(1): 67-70.Gui GH, Chang L, Hu YX, et al. Value analysis of serum CEA and Dickkopf-1 detection combined with low-dose spiral CT scan in the early diagnosis of lung cancer. Chin J CT MRI, 2022, 20(1): 67-70.
|
54. |
劉霄, 江智蛟, 馬錚, 等. 七項TAAbs聯合影像臨床特征在肺部結節惡性風險評估中的研究. 臨床肺科雜志, 2021, 26(9): 1415-1419.Liu X, Jiang ZJ, Ma Z, et al. Study on seven tumor-associated autoantibodies combined with imaging and clinical features in the evaluation of malignant risk of pulmonary nodules. J Clin Pulm Med, 2021, 26(9): 1415-1419.
|
55. |
Chen J, Ming M, Huang S, et al. AI-enhanced diagnostic model for pulmonary nodule classification. Front Oncol, 2024, 14: 1417753.
|
56. |
Xu L, Chang N, Yang T, et al. Development of diagnosis model for early lung nodules based on a seven autoantibodies panel and imaging features. Front Oncol, 2022, 12: 883543.
|