| 1. |
中華醫學會腫瘤學分會. 中華醫學會肺癌臨床診療指南 (2024版). 中華醫學雜志, 2024, 104(34): 3175-3213.Oncology Society of Chinese Medical Association. Chinese Medical Association guideline for clinical diagnosis and treatment of lung cancer (2024 edition). Natl Med J China, 2024, 104(34): 3175-3213.
|
| 2. |
羅國慶, 盧瀟, 李定慧, 等. 2024年第5版《NCCN腫瘤臨床實踐指南: 非小細胞肺癌》更新解讀. 中國胸心血管外科臨床雜志, 2024, 31(7): 955-961.Luo GQ, Lu X, Li DH, et al. Interpretation of the updated NCCN clinical practice guidelines in oncology: non-small cell lung cancer (version 5. 2024). Chin J Clin Thorac Cardiovasc Surg, 2024, 31(7): 955-961.
|
| 3. |
舒文博, 周振宇, 王新, 等. 發展中的肺癌微創主流技術—胸腔鏡手術. 中國臨床新醫學, 2022, 15(3): 189-192.Shu WB, Zhou ZY, Wang X, et al. Thoracoscopic surgery: an advancing mainstream minimally invasive technique for lung cancer. Chin J New Clin Med, 2022, 15(3): 189-192.
|
| 4. |
劉微, 雍芳芳, 王合梅, 等. 胸科手術術后肺部并發癥研究進展. 中華胸心血管外科雜志, 2024, 40(7): 430-437.Liu W, Yong FF, Wang HM, et al. Research advance in postoperative pulmonary complications in thoracic surgery. Chin J of Thorac Cardiovasc Surg, 2024, 40(7): 430-437.
|
| 5. |
費林晶, 鄒宓. 胸腔鏡部分肺切除術后肺部并發癥的危險因素及對患者遠期預后的影響. 反射療法與康復醫學, 2024, 5(22): 110-113.Fei LJ, Zou M. Risk factors of pulmonary complications after thoracoscopic partial pulmonary resection and their effect on long-term prognosis of patients. Reflexol Rehabil Med, 2024, 5(22): 110-113.
|
| 6. |
Levett DZH, Grocott MPW. Cardiopulmonary exercise testing, prehabilitation, and enhanced recovery after surgery (eras). Can J Anaesth, 2015, 62(2): 131-142.
|
| 7. |
張琳, 田新瑞. 心肺運動試驗對圍手術期風險評估的研究進展. 心肺血管病雜志, 2023, 42(4): 375-379.Zhang L, Tian XR. Research progress on cardiopulmonary exercise testing for perioperative risk assessment. J Cardiovasc Pulm Dis, 2023, 42(4): 375-379.
|
| 8. |
Swanson K, Wu E, Zhang A, et al. From patterns to patients: advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell, 2023, 186(8): 1772-1791.
|
| 9. |
Belsti Y, Moran L, Du L, et al. Comparison of machine learning and conventional logistic regression-based prediction models for gestational diabetes in an ethnically diverse population; the monash gdm machine learning model. Int J Med Inform, 2023, 179: 105228.
|
| 10. |
Ponce-Bobadilla AV, Schmitt V, Maier CS, et al. Practical guide to shap analysis: explaining supervised machine learning model predictions in drug development. Clin Transl Sci, 2024, 17(11): e70056.
|
| 11. |
中華醫學會心血管病學分會, 中國康復醫學會心肺預防與康復專業委員會, 中華心血管病雜志編輯委員會. 心肺運動試驗臨床規范應用中國專家共識. 中華心血管病雜志, 2022, 50(10): 973-986.Chinese Society of Cardiology, Professional Committee of Cardiopulmonary Prevention and Rehabilitation of Chinese Rehabilitation Medical Association, Editorial Board of Chinese Journal of Cardiology. Chinese expert consensus on standardized clinical application of cardiopulmonary exercise testing. Chin J Cardiovasc, 2022, 50(10): 973-986.
|
| 12. |
張生清, 林招芹, 馬歡. 正中開胸和胸腔鏡手術對二尖瓣反流患者術后心肺功能影響的對比. 嶺南心血管病雜志, 2024, 30(3): 286-291.Zhang SQ, Lin ZQ, Ma H. Comparison of effects of median thoracotomy and thoracoscopic surgery on postoperative cardiopulmonary function in patients with mitral regurgitation. South China J Cardiovasc Dis, 2024, 30(3): 286-291.
|
| 13. |
Jammer I, Wickboldt N, Sander M, et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European perioperative clinical outcome (EPCO) definitions. Eur J Anaesthesiol, 2015, 32(2): 88-105.
|
| 14. |
Tibshirani R. regression shrinkage and selection via the LASSO. J R Stat Soc Series B Stat Methodol, 2018, 58(1): 267-288.
|
| 15. |
Ross R, Blair SN, Arena R, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the american heart association. Circulation, 2016, 134(24): e653-e699.
|
| 16. |
俞劍昀, 孫興國, 盧琳, 等. 心肺運動試驗(CPET)精準預測功能狀態良好的肺切除手術患者的術后并發癥風險. 中國應用生理學雜志, 2021, 37(2): 195-201.Yu JY, Sun XG, Lu L, et al. Cardiopulmonary exercise test accurately prognoses risk of postoperative complications in patients undergoing lung resection in good functional status. Chin J Appl Physiol, 2021, 37(2): 195-201.
|
| 17. |
Brunelli A, Pompili C, Belardinelli R, et al. Beyond peak VO2: ventilatory inefficiency (VE/VCO2 slope) measured during cardiopulmonary exercise test to refine risk stratification in lung resection candidates. Eur J Cardiothorac Surg, 2010, 38(1): 19-20.
|
| 18. |
Brat K, Homolka P, Merta Z, et al. Prediction of postoperative complications: Ventilatory efficiency and rest end-tidal carbon dioxide. Ann Thorac Surg, 2023, 115(5): 1305-1311.
|
| 19. |
張耀瑩, 張淼, 陳偉, 等. 心肺運動試驗在肺癌患者術后肺部并發癥列線圖預后預測模型建立中的應用. 中國康復醫學雜志, 2023, 38(12): 1689-1695.Zhang YY, Zhang M, Chen W, et al. Application of cardiopulmonary exercise test in the establishment of a nomogram prognostic prediction model for postoperative pulmonary complications in patients with lung cancer. Chin J Rehabil Med, 2023, 38(12): 1689-1695.
|
| 20. |
任夢怡, 李瑾, 張明, 等. 心肺運動試驗在食管癌患者術后并發癥預測中應用的回顧性隊列研究. 中國胸心血管外科臨床雜志, 2024, 31(8): 1148-1155.Ren MY, Li J, Zhang M, et al. Predictive value of cardiopulmonary exercise test in the postoperative complications in patients with esophageal cancer: a retrospective cohort study. Chin J Clin Thorac Cardiovasc Surg, 2024, 31(8): 1148-1155.
|
| 21. |
中華醫學會, 中華醫學會雜志社, 中華醫學會全科醫學分會, 等. 中國常規肺功能檢查基層指南 (2024年). 中華全科醫師雜志, 2025, 24(2): 121-137.Chinese Medical Association, Chinese Medical Association Publishing House, Chinese Society of General Practice, et al. Chinese guideline for routine pulmonary function tests in primary care (2024). Chin J Gen Pract, 2025, 24(2): 121-137.
|
| 22. |
Licker M, Karenovics W, Diaper J, et al. Short-term preoperative high-intensity interval training in patients awaiting lung cancer surgery: a randomized controlled trial. J Thorac Oncol, 2017, 12(2): 323-333.
|
| 23. |
Siddiqi AK, Shahzad M, Kumar A, et al. The efficacy of inspiratory muscle training in improving clinical outcomes in heart failure patients: an updated systematic review and meta-analysis. J Cardiol, 2025, S0914-5087(25): 00016-4.
|
| 24. |
張耀瑩, 李瑾, 高民, 等. 探討肺癌患者胸腔鏡肺切除術后肺部并發癥發生的影響因素. 中國康復, 2021, 36(6): 348-352.Zhang YY, Li J, Gao M, et al. Influencing factors of pulmonary complications after thoracoscopic pneumonectomy in patients with lung cancer. Chin J Rehabil, 2021, 36(6): 348-352.
|
| 25. |
Hauschild AC, Lemanczyk M, Matschinske J, et al. Federated random forests can improve local performance of predictive models for various healthcare applications. Bioinformatics, 2022, 38(8): 2278-2886.
|