1. |
董吁鋼, 楊杰孚. 左心室肥厚診斷和治療臨床路徑中國專家共識2023. 中國循環雜志, 2024, 39(1): 17-28.Dong YG, Yang JF. Chinese expert consensus on the clinical pathway of diagnosis and treatment of left ventricular hypertrophy 2023. Chin J Circ, 2024, 39(1): 17-28.
|
2. |
賴曉琳. 心臟彩超對高血壓左心室肥厚伴左心衰竭的臨床診斷意義. 中國醫療器械信息, 2024, 30(20): 117-119.Lai XL. Clinical diagnostic significance of cardiac color doppler ultrasound in hypertensive left ventricular hypertrophy with left ventricular failure. Chin Med Device Inf, 2024, 30(20): 117-119.
|
3. |
呂靜, 朱永琪, 朱彥芳, 等. CMR影像組學聯合臨床因素預測肥厚型心肌病并發室性心律失常的價值. 磁共振成像, 2024, 15(4): 63-71, 87.Lv J, Zhu YQ, Zhu YF, et al. Value of CMR imaging combined with clinical factors in predicting ventricular arrhythmia in patients with hypertrophic cardiomyopathy. Chin J Magn Reson Imaging, 2024, 15(4): 63-71, 87.
|
4. |
湯春光, 王利宏. 高血壓患者24 h動態血壓晝夜節律與左心室肥厚和心肌缺血及心律失常的關系. 中華高血壓雜志, 2017, 25(10): 978-981.Tang CG, Wang LH. Relationship between circadian rhythm of 24 h ambulatory blood pressure and left ventricular hypertrophy, myocardial ischemia and arrhythmia in patients with hypertension. Chin J Hypertens, 2017, 25(10): 978-981.
|
5. |
楊瑤瑤, 鄒玉寶. T1 mapping在肥厚型心肌病心肌纖維化評估中的應用進展. 中國分子心臟病學雜志, 2021, 21(4): 4135-4137.Yang YY, Zou YB. Advances in the application of T1 mapping in the evaluation of myocardial fibrosis in hypertrophic cardiomyopathy. Mol Cardiol China, 2021, 21(4): 4135-4137.
|
6. |
馮雪芳, 鐘銀燕, 章琴鶯, 等. 心電圖Cornell乘積和Sokolow-Lyon電壓與代謝指標關系研究. 中國實用內科雜志, 2018, 38(1): 60-64.Feng XF, Zhong YY, Zhang QY, et al. Relationship between Cornell product and Sokolow-Lyon voltage of electrocardiogram and metabolic indexes. Chin J Pract Intern Med, 2018, 38(1): 60-64.
|
7. |
Cirillo C, Matarrese MAG, Monda E, et al. Artificial intelligence for left ventricular hypertrophy detection and differentiation on echocardiography, cardiac magnetic resonance and cardiac computed tomography: a systematic review. Int J Cardiol, 2025, 422: 132979.
|
8. |
張艷, 吳昆華, 范潔, 等. 心臟磁共振成像在左心室肥厚性疾病中的應用. 昆明理工大學學報 (自然科學版), 2020, 45(1): 59-64.Zhang Y, Wu KH, Fan J, et al. Application of cardiac magnetic resonance imaging in left ventricular hypertrophic disease. J Kunming University Sci Technol (Nat Sci), 2020, 45(1): 59-64.
|
9. |
汪小開, 金麗仙, 應夏青. 三維超聲心動圖評估中度肥厚型心肌病患兒乳頭肌、二尖瓣結構和功能的應用價值. 心電與循環, 2023, 42(5): 444-448.Wang XK, Jin LX, Ying XQ. Application value of three-dimensional echocardiography in evaluating the structure and function of papillary muscle and mitral valve in children with moderate hypertrophic cardiomyopathy. Cardiol Circ, 2023, 42(5): 444-448.
|
10. |
馬志明, 徐洪洋, 邱鵬, 等. 深度學習在心臟瓣膜病輔助診斷中的研究進展. 中國胸心血管外科臨床雜志, 2025. Epub ahead of print.Ma ZM, Xu HY, Qiu P, et al. Research progress of deep learning in auxiliary diagnosis of valvular heart disease. Chin J Clin Thorac Cardiovasc Surg, 2025. Epub ahead of print.
|
11. |
王永威, 魏德健, 曹慧, 等. 深度學習在心力衰竭檢測中的應用綜述. 計算機科學與探索, 2025, 19(1): 65-78.Wang YW, Wei DJ, Cao H, et al. A review of deep learning applications in heart failure detection. J Frontiers Comput Sci Technol, 2025, 19(1): 65-78.
|
12. |
伍倩, 郭輝. 基于深度學習的磁共振成像在冠心病診療中的應用進展. 磁共振成像, 2024, 15(11): 190-197.Wu Q, Guo H. Advances in the application of deep learning-based magnetic resonance imaging in coronary heart disease diagnosis and treatment. Chin J Magn Reson Imaging, 2024, 15(11): 190-197.
|
13. |
Kasa G, Teis A, Juncà G, et al. Clinical and prognostic implications of left ventricular dilatation in heart failure. Eur Heart J Cardiovasc Imaging, 2024, 25(6): 849-856.
|
14. |
袁典, 杜昱崢, 魏德健, 等. 卷積神經網絡基于MRI在半月板損傷診斷中的研究進展. 磁共振成像, 2024, 15(3): 223-229.Yuan D, Du YZ, Wei DJ, et al. Research progress of convolutional neural network based on MRI in meniscal injury diagnosis. Chin J Magn Reson Imaging, 2024, 15(3): 223-229.
|
15. |
李國威, 劉靜, 曹慧, 等. 深度學習在結腸息肉圖像分割中的研究綜述. 計算機科學與探索, 2025, 19(5): 1198-1216.Li GW, Liu J, Cao H, et al. Review of Deep learning in image segmentation of colon polyps. J Frontiers Comput Sci Technol, 2025, 19(5): 1198-1216.
|
16. |
古力米熱·阿吾旦, 葉俊翔, 瑪依拉·阿不都克力木, 等. 基于深度學習的肺結節CT圖像分割與分類研究綜述. 計算機工程與應用, 2025, 61(15): 14-35.Gulimire AWD, Ye JX, Mayila ABDKLM, et al. A review of deep learning-based CT image segmentation and classification of pulmonary nodules. Comput Eng Applications, 2025, 61(15): 14-35.
|
17. |
許詩怡, 陳明惠, 邵怡, 等. 結合深度學習的糖尿病視網膜病變血管分割和重建. 中國醫學物理學雜志, 2024, 41(10): 1256-1264.Xu SY, Chen MH, Shao Y, et al. Blood vessel segmentation and reconstruction in diabetic retinopathy combined with deep learning. Chin J Med Phys, 2024, 41(10): 1256-1264.
|
18. |
Rabkin SW. Searching for the best machine learning algorithm for the detection of left ventricular hypertrophy from the ECG: a review. Bioengineering (Basel), 2024, 11(5): 489.
|
19. |
Zhao C, Liu Y, Chen W, et al. Multi-scale frequency feature fusion transformer for pediatric echocardiography analysis. Applied Soft Computing, 2025, 173112950-112950.
|
20. |
Hwang IC, Choi D, Choi YJ, et al. Differential diagnosis of common etiologies of left ventricular hypertrophy using a hybrid CNN-LSTM model. Sci Rep, 2022, 12(1): 20998.
|
21. |
Yu X, Yao X, Wu B, et al. Using deep learning method to identify left ventricular hypertrophy on echocardiography. Int J Cardiovasc Imaging, 2022, 38(4): 759-769.
|
22. |
Holste G, Oikonomou EK, Mortazavi BJ, et al. Efficient deep learning-based automated diagnosis from echocardiography with contrastive self-supervised learning. Commun Med (Lond), 2024, 4(1): 133.
|
23. |
Farhad M, Masud MM, Beg A, et al. A data-efficient zero-shot and few-shot Siamese approach for automated diagnosis of left ventricular hypertrophy. Comput Biol Med, 2023, 163: 107129.
|
24. |
Duffy G, Cheng PP, Yuan N, et al. High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning. JAMA Cardiol, 2022, 7(4): 386-395.
|
25. |
Xu Z, Yu F, Zhang B, et al. Intelligent diagnosis of left ventricular hypertrophy using transthoracic echocardiography videos. Comput Methods Programs Biomed, 2022, 226: 107182.
|
26. |
蒲倩, 楊慧義, 彭鵬飛, 等. 心臟磁共振評價慢性腎臟病患者不同左心室構型的心肌組織特征. 磁共振成像, 2024, 15(8): 124-131.Pu Q, Yang HY, Peng PF, et al. Evaluation of myocardial tissue characteristics of different left ventricular configurations in patients with chronic kidney disease by cardiac magnetic resonance. Chin J Magn Reson Imaging, 2024, 15(8): 124-131.
|
27. |
Ferreira VM, Piechnik SK. CMR parametric mapping as a tool for myocardial tissue characterization. Korean Circ J, 2020, 50(8): 658-676.
|
28. |
Messroghli DR, Moon JC, Ferreira VM, et al. Correction to: clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson, 2018, 20(1): 9.
|
29. |
Chen WW, Kuo L, Lin YX, et al. A deep learning approach to classify fabry cardiomyopathy from hypertrophic cardiomyopathy using cine imaging on cardiac magnetic resonance. Int J Biomed Imaging, 2024, 2024: 6114826.
|
30. |
Germain P, Vardazaryan A, Padoy N, et al. Deep learning supplants visual analysis by experienced operators for the diagnosis of cardiac amyloidosis by cine-CMR. Diagnostics (Basel), 2021, 12(1): 69.
|
31. |
Yan Z, Su Y, Sun H, et al. SegNet-based left ventricular MRI segmentation for the diagnosis of cardiac hypertrophy and myocardial infarction. Comput Methods Programs Biomed, 2022, 227: 107197.
|
32. |
Diao K, Liang HQ, Yin HK, et al. Multi-channel deep learning model-based myocardial spatial-temporal morphology feature on cardiac MRI cine images diagnoses the cause of LVH. Insights Imaging, 2023, 14(1): 70.
|
33. |
Ning T, Zhang TT, Huang GW. FCTNet: fusion of 3D CNN and transformer dance action recognition network. J Intell Fuzzy Syst, 2025, 48(1-2): 23-31.
|
34. |
李玉潔, 馬子航, 王藝甫, 等. 視覺Transformer (ViT)發展綜述. 計算機科學, 2025, 52(1): 194-209.Li YJ, Ma ZH, Wang YF, et al. Overview of visual transformer (ViT) development. Comput Sci, 2025, 52(1): 194-209.
|
35. |
岳珂娟, 伍炯星, 謝東. 領域自適應方法用于醫學影像研究進展. 中國醫學影像技術, 2024, 40(6): 936-939.Yue KJ, Wu JX, Xie D. Research progress of domain adaptive method for medical imaging. China Med Imaging Technol, 2024, 40(6): 936-939.
|
36. |
郭思昀, 李雷孝, 杜金澤, 等. 基于區塊鏈的聯邦學習系統方案研究綜述. 計算機工程與應用, 2025, 61(15): 36-53.Guo SJ, Li LX, Du JZ, et al. A review of research on blockchain-based federated learning system solutions. Comput Eng Applications, 2025, 61(15): 36-53.
|
37. |
Al Hinai G, Jammoul S, Vajihi Z, et al. Deep learning analysis of resting electrocardiograms for the detection of myocardial dysfunction, hypertrophy, and ischaemia: a systematic review. Eur Heart J Digit Health, 2021, 2(3): 416-423.
|
38. |
Gupta A, Harvey CJ, DeBauge A, et al. Machine learning to classify left ventricular hypertrophy using ECG feature extraction by variational autoencoder. medRxiv, 2024.
|
39. |
Siontis KC, Wieczorek MA, Maanja M, et al. Hypertrophic cardiomyopathy detection with artificial intelligence electrocardiography in international cohorts: an external validation study. Eur Heart J Digit Health, 2024, 5(4): 416-426.
|
40. |
Kokubo T, Kodera S, Sawano S, et al. Automatic detection of left ventricular dilatation and hypertrophy from electrocardiograms using deep learning. Int Heart J, 2022, 63(5): 939-947.
|
41. |
Ryu JS, Lee S, Chu Y, et al. CoAt-Mixer: self-attention deep learning framework for left ventricular hypertrophy using electrocardiography. PLoS One, 2023, 18(6): e0286916.
|
42. |
Rijnbeek PR, Herpen GV, Kapusta L, et al. Electrocardiographic criteria for left ventricular hypertrophy in children. Pediatr Cardiol, 2008, 29(5): 923-928.
|
43. |
Mayourian J, Cava WGL, Vaid A, et al. Pediatric ECG-based deep learning to predict left ventricular dysfunction and remodeling. Circulation, 2024, 149(12): 917-931.
|
44. |
Dwivedi T, Xue J, Treiman D, et al. Machine learning models of 6-lead ECGs for the interpretation of left ventricular hypertrophy (LVH). J Electrocardiol, 2023, 77: 62-67.
|
45. |
Khurshid S, Friedman S, Pirruccello JP, et al. Deep learning to predict cardiac magnetic resonance-derived left ventricular mass and hypertrophy from 12-lead ECGs. Circ Cardiovasc Imaging, 2021, 14(6): e012281.
|
46. |
Soto JT, Weston HJ, Sanchez PA, et al. Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy. Eur Heart J Digit Health, 2022, 3(3): 380-389.
|
47. |
Bhave S, Rodriguez V, Poterucha T, et al. Deep learning to detect left ventricular structural abnormalities in chest X-rays. Eur Heart J, 2024, 45(22): 2002-2012.
|
48. |
Urbina T, Faucheux L, Lavillegrand RJ, et al. Invasive group A streptococcus infections in the intensive care unit: an unsupervised cluster analysis of a multicentric retrospective cohort. Critical Care (London, England), 2025, 29(1): 239.
|
49. |
Loutati R, Kolben Y, Luria D, et al. AI-based cluster analysis enables outcomes prediction among patients with increased LVM. Front Cardiovasc Med, 2024, 11: 1357305.
|
50. |
Allegra A, Mirabile G, Tonacci A, et al. Machine learning approaches in diagnosis, prognosis and treatment selection of cardiac amyloidosis. Int J Mol Sci, 2023, 24(6): 5680.
|
51. |
Hwang IC, Chun EJ, Kim PK, et al. Automated extracellular volume fraction measurement for diagnosis and prognostication in patients with light-chain cardiac amyloidosis. PLoS One, 2025, 20(1): e0317741.
|
52. |
Theodorakakou F, Fotiou D, Spiliopoulou V, et al. Re-evaluation of Mayo 2004 and revised Mayo 2012 staging in patients with AL amyloidosis in the era of new therapies. Amyloid, 2025, 32(2): 193-195.
|
53. |
劉漳輝, 林哲旭, 陳漢林, 等. 一種基于聯盟區塊鏈的數據可信共享方案. 計算機科學, 2025. Epub ahead of print.Liu ZH, Lin ZX, Chen HL, et al. A trusted data sharing scheme based on consortium blockchain. Comput Sci, 2025. Epub ahead of print.
|
54. |
Moura B, Aimo A, Al-Mohammad A, et al. Diagnosis and management of patients with left ventricular hypertrophy: role of multimodality cardiac imaging. A scientific statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail, 2023, 25(9): 1493-1506.
|
55. |
周小芹, 劉慧珍, 王婷, 等. 人工智能賦能醫學領域的挑戰與發展方向. 中國胸心血管外科臨床雜志, 2025, 32(2): 244-251.Zhou XQ, Liu HZ, Wang T, et al. Challenges and development directions in the field of artificial intelligence empowering medicine. Chin J Clin Thorac Cardiovasc Surg, 2025, 32(2): 244-251.
|
56. |
Sato M, Kodera S, Setoguchi N, et al. Deep learning models for predicting left heart abnormalities from single-lead electrocardiogram for the development of wearable devices. Circ J, 2023, 88(1): 146-156.
|
57. |
吳丹, 周闊, 周寧天, 等. 可穿戴式心音心電記錄儀對社區高血壓患者左心室肥厚的預測價值. 中南醫學科學雜志, 2024, 52(6): 954-957.Wu D, Zhou K, Zhou NT, et al. Predictive value of wearable heart sound and ECG recorder for left ventricular hypertrophy in community-based hypertensive patients. Med Sci J Cent South Chin, 2024, 52(6): 954-957.
|
58. |
Yuan V, Vukadinovic M, Kwan AC, et al. Clinical and genetic associations of asymmetric apical and septal left ventricular hypertrophy. Eur Heart J Digit Health, 2024, 5(5): 591-600.
|