1. |
中國醫藥教育協會肺癌醫學教育委員會, 中國胸外科肺癌聯盟, 中國抗癌協會腫瘤消融治療專業委員會, 等. 多發磨玻璃結節樣肺癌多學科診療中國專家共識 (2024年版). 中華內科雜志, 2024, 63(2): 153-169.Chinese Medical Education Association Lung Cancer Medical Education Committee, China Lung Cancer Coalition in Thoracic Surgery, Chinese Anti-Cancer Association Tumor Ablation Therapy Professional Committee, et al. Chinese expert consensus on multidisciplinary diagnosis and treatment of multiple ground-glass nodular lung cancer (2024 version). Chin J Intern Med, 2024, 63(2): 153-169.
|
2. |
McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med, 2013, 369(10): 910-919.
|
3. |
Guerrini S, Del Roscio D, Zanoni M, et al. Lung cancer imaging: screening result and nodule management. Int J Environ Res Public Health, 2022, 19(4): 2460.
|
4. |
Wu Z, Wang F, Cao W, et al. Lung cancer risk prediction models based on pulmonary nodules: a systematic review. Thorac Cancer, 2022, 13(5): 664-677.
|
5. |
許萬星, 王琳, 郭巧梅, 等. 多模態肺結節診斷模型的臨床驗證及應用價值探索. 上海交通大學學報(醫學版), 2024, 44(8): 1030-1036.Xu WX, Wang L, Guo QM, et al. Clinical validation and application value exploration of multi-modal pulmonary nodule diagnosis model. J Shanghai Jiao Tong Univ (Med Sci), 2024, 44(8): 1030-1036.
|
6. |
National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5): 395-409.
|
7. |
Visser O, van Leeuwen FE. Stage-specific survival of epithelial cancers in North-Holland/Flevoland, the Netherlands. Eur J Cancer. 2005, 41(15): 2321-2330.
|
8. |
李明珠, 陳啟亮, 陳謙峰, 等. 基于證素辨證原理的微觀指標中醫辨證意義探究策略. 中華中醫藥雜志, 2021, 36(11): 6285-6288.Li MZ, Chen QL, Chen QF, et al. Exploration on the significance of TCM syndrome differentiation in micro index from syndrome elements differentiation principle. Chin J Trad Chin Med Pharm, 2021, 36(11): 6285-6288.
|
9. |
向紅霞, 何佳瑋, 譚施言, 等. 肺結節患者證素分布及與唾液菌群相關性研究. 中國胸心血管外科臨床雜志, 2025, 32(5): 608-618.Xiang HX, He JW, Tan SY, et al. Study on the correlation between the distribution of traditional Chinese medicinesyndrome elements and salivary microbiota in patients with pulmonary nodules. Chin J Clin Thorac Cardiovasc Surg, 2025, 32(5): 608-618.
|
10. |
Zhang J, Wu Y, Liu J, et al. Differential oral microbial input determines two microbiota pneumo-types associated with health status. Adv Sci (Weinh), 2022, 9(32): e2203115.
|
11. |
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther, 2024, 9(1): 19.
|
12. |
Ren YF, Ma Q, Zeng X, et al. Saliva-microbiome-derived signatures: Expected to become a potential biomarker for pulmonary nodules (MCEPN-1). BMC Microbiol, 2024, 24(1): 132.
|
13. |
任益鋒, 馬瓊, 李芳, 等. 肺結節患者唾液微生物菌群特征分析: 一項前瞻性、非隨機、同期對照試驗. 四川大學學報(醫學版), 2023, 54(6): 1208-1218.Ren YF, Ma Q, Li F, et al. Analysis of salivary microbiota characteristics in patients with pulmonary nodules: a prospective nonrandomized concurrent controlled trial. J Sichuan Univ (Med Sci), 2023, 54(6): 1208-1218.
|
14. |
Ma ZS. Heterogeneity-disease relationship in the human microbiome-associated diseases. FEMS Microbiol Ecol, 2020, 96(7): fiaa093.
|
15. |
肖沖, 黃文博, 李雪珂, 等. 基于臨界慢化原理探討肺“結-癌轉化”的“未-已病”表征體系. 世界中醫藥, 2024, 19(23): 3655-3659.Xiao C, Huang WB, Li XK, et al. Exploring the "pre-post disease" characterization system for the lung "nodules-cancer transformation" based on the principle of critical slowing down. World Chin Med, 2024, 19(23): 3655-3659.
|
16. |
中華醫學會呼吸病學分會, 中國肺癌防治聯盟專家組. 肺結節診治中國專家共識(2024年版). 中華結核和呼吸雜志, 2024, 47(8): 716-729.Chinese Society of Respiratory Diseases, Expert Group of China Lung Cancer Prevention and Treatment Alliance. Chinese expert consensus on diagnosis and treatment of pulmonary nodules (2024). Chin J Tubercul Resp Dis, 2024, 47(8): 716-729.
|
17. |
楊國旺, 張興涵, 張懷銳, 等. 肺結節中西醫結合全程管理專家共識. 中國實驗方劑學雜志, 2024, 30(1): 149-159.Yang GW, Zhang XH, Zhang HR, et al. Expert consensus on whole-process management of pulmonary nodules with integrated traditional Chinese and western medicine. Chin J Exper Trad Med Form, 2024, 30(1): 149-159.
|
18. |
朱文鋒, 主編. 證素辨證學. 人民衛生出版社, 2008.1-37.Zhu WF, chief editor. Syndrome Element Differentiation. People's Medical Publishing House, 2008. 1-37.
|
19. |
陳美池, 姜朋媛, 褚雪鐳, 等. 242例肺結節患者中醫證素特征分析. 遼寧中醫雜志, 2025, 52(1): 1-5.Chen MC, Jiang PY, Chu XL, et al. Analysis of TCM syndrome elements in 242 patients with pulmonary nodules. Liaoning J Trad Chin Med, 2025, 52(1): 1-5.
|
20. |
譚施言, 曾瓊, 向紅霞, 等. 電子鼻聯合機器學習對肺結節良惡性及中醫證素呼氣圖譜辨識的單中心觀察性研究. 中國胸心血管外科臨床雜志, 2025, 32(2): 185-193.Tan SY, Zeng Q, Xiang HX, et al. Recognition of breath odor map of benign and malignant pulmonary nodules and traditional Chinese medicine syndrome elements based on electronic nose combined with machine learning: an observational study in a single center. Chin J Clin Thorac Cardiovasc Surg, 2025, 32(2): 185-193.
|
21. |
Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ, 2020, 368: m441.
|
22. |
Sathyanarayanan A, Gupta R, Thompson EW, et al. A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping. Brief Bioinform, 2020, 21(6): 1920-1936.
|
23. |
Heo YJ, Hwa C, Lee GH, et al. Integrative multi-omics approaches in cancer research: from biological networks to clinical subtypes. Mol Cells, 2021, 44(7): 433-443.
|
24. |
Zhang J, Zhang J, Yuan C, et al. Establishment of the prognostic index reflecting tumor immune microenvironment of lung adenocarcinoma based on metabolism-related genes. J Cancer, 2020, 11(24): 7101.
|
25. |
Avanzo M, Stancanello J, Pirrone G, et al. Radiomics and deep learning in lung cancer. Strahlenther Onkol, 2020, 196(10): 879-887.
|
26. |
Chen K, Bai J, Reuben A, et al. Multiomics analysis reveals distinct immunogenomic features of lung cancer with ground-glass opacity. Am J Respir Crit Care Med, 2021, 204(10): 1180-1192.
|
27. |
Poirion O B, Jing Z, Chaudhary K, et al. DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data. Genome Med, 2021, 13(1): 112.
|
28. |
Sammut SJ, Crispin-Ortuzar M, Chin SF, et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature, 2022, 601(7894): 623-629.
|
29. |
Sudhakar M, Rengaswamy R, Raman K. Multi-omic data improve prediction of personalized tumor suppressors and oncogenes. Front Genet, 2022, 13: 854190.
|
30. |
Chai H, Zhou X, Zhang Z, et al. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Comput Biol Med, 2021, 134: 104481.
|
31. |
王佩瑾, 閆志遠, 容雪娥, 等. 數據受限條件下的多模態處理技術綜述. 中國圖象圖形學報, 2022, 27(10): 2803-2834.Wang PJ, Yan ZY, Rong XE, et al. Review of multimodal data processing techniques with limited data. J Image Graph, 2022, 27(10): 2803-2834.
|
32. |
Kopf A, Fortuin V, Somnath VR, et al. Mixture-of-experts variational autoencoder for clustering and generating from similarity-based representations on single cell data. PLoS Comput Biol, 2021, 17(6): e1009086.
|
33. |
Cheng J, Gao M, Liu J, et al. Multimodal disentangled variational autoencoder with game theoretic interpretability for glioma grading. IEEE J Biomed Health Inform, 2022, 26(2): 673-684.
|