- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210019, Jiangsu, P. R. China;
[Abstract]Esophageal stricture is a common esophageal lesion in adults and children, and endoscopic dilatation is currently the standard treatment. However, high recurrence rate and frequent dilations have become a major problem in patients. Esophageal stents provide sustained dilation therapy but can lead to serious complications such as displacement, perforation, and bleeding, necessitating removal. Biodegradable stents, with the advantage of both dilation and self-degradation, are promising potential solutions to this problem. Currently, biodegradable materials are mainly categorized into metals and polymers, leading to the development of magnesium alloy esophageal stents and polymer esophageal stents. Among polymer stents, PLLA stents and SX-ELLA stents have been put into clinical application. In recent years, with the advancement of 3D bioprinting technology, the personalized fabrication of biodegradable stents has become feasible. In this paper, we will outline the current research status and progress of biodegradable magnesium alloy stents and polymer stents, introduce the new process of constructing esophageal stents by 3D bioprinting technology, focus on the clinical research of SX-ELLA stents in pediatric and adult patients. We will also analyze the existing problems with biodegradable stents and the directions for future development.
Copyright ? the editorial department of Chinese Journal of Clinical Thoracic and Cardiovascular Surgery of West China Medical Publisher. All rights reserved
| 1. | 柴寧莉, 李隆松, 鄒家樂. 中國食管良惡性狹窄內鏡下防治專家共識意見(2020, 北京). 中華胃腸內鏡電子雜志, 2020, 7(4): 165-175. |
| 2. | Spaander MCW, van der Bogt RD, Baron TH, et al. Esophageal stenting for benign and malignant disease: European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2021. Endoscopy, 2021, 53(7): 751-762. |
| 3. | Tandon S, Burnand KM, De Coppi P, et al. Self-expanding esophageal stents for the management of benign refractory esophageal strictures in children: A systematic review and review of outcomes at a single center. J Pediatr Surg, 2019, 54(12): 2479-2486. |
| 4. | Shahein AR, Krasaelap A, Ng K, et al. Esophageal dilation in children: A state of the art review. J Pediatr Gastroenterol Nutr, 2023, 76(1): 1-8. |
| 5. | 中華醫學會小兒外科學分會普胸外科學組, 中國醫師協會小兒外科醫師分會心胸外科專委會. 兒童食管狹窄外科處理策略中國專家共識(2023版). 中華小兒外科雜志, 2023, 44(9): 774-783. |
| 6. | Ruigómez A, García Rodríguez LA, Wallander MA, et al. Esophageal stricture: Incidence, treatment patterns, and recurrence rate. Am J Gastroenterol, 2006, 101(12): 2685-2692. |
| 7. | McCain S, McCain S, Quinn B, et al. The role of biodegradable stents in the management of benign and malignant oesophageal strictures: A cohort study. Surgeon, 2016, 14(6): 322-326. |
| 8. | 陳功, 鄭珊. 兒童食管狹窄的病因及診治進展. 臨床小兒外科雜志, 2019, 18(6): 437-441. |
| 9. | Fugazza A, Repici A. Endoscopic management of refractory benign esophageal strictures. Dysphagia, 2021, 36(3): 504-516. |
| 10. | Sami SS, Haboubi HN, Ang Y, et al. UK guidelines on oesophageal dilatation in clinical practice. Gut, 2018, 67(6): 1000-1023. |
| 11. | Desai M, Hamade N, Sharma P. Management of peptic strictures. Am J Gastroenterol, 2020, 115(7): 967-970. |
| 12. | de Wijkerslooth LR, Vleggaar FP, Siersema PD. Endoscopic management of difficult or recurrent esophageal strictures. Am J Gastroenterol, 2011, 106(12): 2080-2091. |
| 13. | Alwan M, Giddings CE. Self-dilatation of benign oesophageal strictures: A literature review. ANZ J Surg, 2021, 91(7-8): 1385-1389. |
| 14. | Yang F, Hu Y, Shi Z, et al. The occurrence and development mechanisms of esophageal stricture: State of the art review. J Transl Med, 2024, 22(1): 123. |
| 15. | Repici A, Small AJ, Mendelson A, et al. Natural history and management of refractory benign esophageal strictures. Gastrointest Endosc, 2016, 84(2): 222-228. |
| 16. | Imaz-Iglesia I, García-Pérez S, Nachtnebel A, et al. Biodegradable stents for the treatment of refractory or recurrent benign esophageal stenosis. Expert Rev Med Devices, 2016, 13(6): 583-599. |
| 17. | Fuccio L, Hassan C, Frazzoni L, et al. Clinical outcomes following stent placement in refractory benign esophageal stricture: A systematic review and meta-analysis. Endoscopy, 2016, 48(2): 141-148. |
| 18. | Li L, Xu N, Wang P, et al. A novel self-inflatable balloon for treating refractory benign esophageal strictures: A prospective, single-arm, multicenter study. Int J Surg, 2024, 110(4): 2055-2064. |
| 19. | Kang Y. A review of self-expanding esophageal stents for the palliation therapy of inoperable esophageal malignancies. Biomed Res Int, 2019 Apr 4: 2019: 9265017. |
| 20. | Frimberger E. Expanding spiral--A new type of prosthesis for the palliative treatment of malignant esophageal stenoses. Endoscopy, 1983, 15 Suppl 1: 213-214. |
| 21. | Canena JM, Liberato MJ, Rio-Tinto RA, et al. A comparison of the temporary placement of 3 different self-expanding stents for the treatment of refractory benign esophageal strictures: A prospective multicentre study. BMC Gastroenterol, 2012, 12: 70. |
| 22. | Zhu Y, Yang K, Cheng R, et al. The current status of biodegradable stent to treat benign luminal disease(Review). Mater Today, 2017, 20(9): 516-529. |
| 23. | 楊立寶, 陳桂, 關靜, 等. 生物可降解材料及其在生物醫學上的應用. 新材料產業, 2018(12): 38-42. |
| 24. | 楊健, 孟禮飛, 謝曉, 等. 新型可降解支架治療食管吻合口瘺的療效分析. 現代生物醫學進展, 2018, 18(11): 2043-2046. |
| 25. | Tie D, Guan R, Liu H, et al. In vivo degradability and biocompatibility of a rheo-formed Mg–Zn–Sr alloy for ureteral implantation. J Magnes Alloys, 2022, 10(6): 1631-1639. |
| 26. | H?nzi AC, Gerber I, Schinhammer M, et al. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater, 2010, 6(5): 1824-1833. |
| 27. | Bowen PK, Shearier ER, Zhao S, et al. Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-alloys. Adv Healthc Mater, 2016, 5(10): 1121-1140. |
| 28. | Sun Y, Wu H, Wang W, et al. Translational status of biomedical Mg devices in China. Bioact Mater, 201, 4: 358-365. |
| 29. | Schinhammer M, Gerber I, H?nzi AC, et al. On the cytocompatibility of biodegradable Fe-based alloys. Mater Sci Eng C Mater Biol Appl, 2013, 33(2): 782-789. |
| 30. | Xu Y, Wang W, Yu F, et al. The enhancement of mechanical properties and uniform degradation of electrodeposited Fe-Zn alloys by multilayered design for biodegradable stent applications. Acta Biomater, 2023, 161: 309-323. |
| 31. | Scarcello E, Lison D. Are fe-based stenting materials biocompatible? A Critical Review of in vitro and in vivo Studies. J Funct Biomater, 2019, 11(1): 2. |
| 32. | Md Yusop AH, Ulum MF, Al Sakkaf A, et al. Insight into the bioabsorption of Fe-based materials and their current developments in bone applications. Biotechnol J, 2021, 16(12): e2100255. |
| 33. | Venezuela J, Dargusch MS. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater, 2019, 87: 1-40. |
| 34. | Yang K, Ling C, Yuan T, et al. Polymeric biodegradable stent insertion in the esophagus. Polymers (Basel), 2016, 8(5): 158. |
| 35. | Ciulla MG, Massironi A, Sugni M, et al. Recent advances in the development of biomimetic materials. Gels, 2023, 9(10): 833. |
| 36. | Alaswad SO, Mahmoud AS, Arunachalam P. Recent advances in biodegradable polymers and their biological applications: A brief review. Polymers (Basel), 2022, 14(22): 4924. |
| 37. | Ferreira-Silva J, Medas R, Girotra M, et al. Futuristic developments and applications in endoluminal stenting. Gastroenterol Res Pract, 2022, 2022: 6774925. |
| 38. | Sezer N, Evis Z, Ko M. Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends. J Magnes Alloys, 2021, 9(2): 392-415. |
| 39. | Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology? Heart, 2003, 89(6): 651-656. |
| 40. | Yuan T, Yu J, Cao J, et al. Fabrication of a delaying biodegradable magnesium alloy-based esophageal stent via coating elastic polymer. Materials (Basel), 2016, 9(5): 384. |
| 41. | Yang K, Cao J, Yuan TW, et al. Silicone-covered biodegradable magnesium stent for treating benign esophageal stricture in a rabbit model. World J Gastroenterol, 2019, 25(25): 3207-3217. |
| 42. | 顧松, 顧洪斌, 馬靖, 等. 可降解鎂合金食管支架治療食管狹窄的動物實驗研究. 臨床小兒外科雜志, 2018, 17(1): 60-65. |
| 43. | Wang S, Zhang X, Li J, et al. Investigation of Mg-Zn-Y-Nd alloy for potential application of biodegradable esophageal stent material. Bioact Mater, 2020, 5(1): 1-8. |
| 44. | Liu LL, Qin J, Zeng CH, et al. Biodegradable PTX-PLGA-coated magnesium stent for benign esophageal stricture: An experimental study. Acta Biomater, 2022, 146: 495-505. |
| 45. | Goldin E, Fiorini A, Ratan Y, et al. A new biodegradable and self-expandable stent for benign esophageal strictures. Gastrointest Endosc, 1996, 43(4): 294. |
| 46. | Yu X, Wang L, Huang M, et al. A shape memory stent of poly(ε-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J Mater Sci Mater Med, 2012, 23(2): 581-589. |
| 47. | Chen S, Xiao M, Hou Z, et al. Functionalized TMC and ε-CL elastomers with shape memory and self-healing properties. Front Bioeng Biotechnol, 2023, 11: 1298723. |
| 48. | Lee J, Kang SK. Principles for controlling the shape recovery and degradation behavior of biodegradable shape-memory polymers in biomedical applications. Micromachines (Basel), 2021, 12(7): 757. |
| 49. | 顏波, 狄鎮海, 施瑞華, 等. 新型可降解防移位食管支架實驗研究. 介入放射學雜志, 2021, 30(2): 153-157. |
| 50. | 曹洋, 馮亞東, 焦春花, 等. 分段式可降解食管支架的臨床前評價. 浙江大學學報(醫學版), 2017, 46(6): 649-655. |
| 51. | Pauli EM, Schomisch SJ, Furlan JP, et al. Biodegradable esophageal stent placement does not prevent high-grade stricture formation after circumferential mucosal resection in a porcine model. Surg Endosc, 2012, 26(12): 3500-3508. |
| 52. | Martinek J, Dolezel R, Walterova B, et al. Stenting to prevent esophageal stricture after circumferential endoscopic submucosal dissection: An experimental study. Endosc Int Open, 2020, 8(11): E1698-E1706. |
| 53. | Liu J, Shang L, Liu J, et al. A novel biodegradable esophageal stent: Results from mechanical and animal experiments. Am J Transl Res, 2016, 8(2): 1108-1114. |
| 54. | Shang L, Pei QS, Xu D, et al. Novel detachable stents for the treatment of benign esophageal strictures. Exp Ther Med, 2020, 19(1): 115-122. |
| 55. | Fry SW, Fleischer DE. Management of a refractory benign esophageal stricture with a new biodegradable stent. Gastrointest Endosc, 1997, 45(2): 179-182. |
| 56. | Tanaka T, Takahashi M, Nitta N, et al. Newly developed biodegradable stents for benign gastrointestinal tract stenoses: A preliminary clinical trial. Digestion, 2006, 74(3-4): 199-205. |
| 57. | Saito Y, Tanaka T, Andoh A, et al. Usefulness of biodegradable stents constructed of poly-l-lactic acid monofilaments in patients with benign esophageal stenosis. World J Gastroenterol, 2007, 13(29): 3977-3980. |
| 58. | Yano T, Yoda Y, Nonaka S, et al. Pivotal trial of a biodegradable stent for patients with refractory benign esophageal stricture. Esophagus, 2022, 19(3): 516-524. |
| 59. | Davidson JR, McCluney S, Reddy K, et al. Pediatric esophageal dilatations: A cross-specialty experience. J Laparoendosc Adv Surg Tech A, 2020, 30(2): 206-209. |
| 60. | Sohouli MH, Alimadadi H, Rohani P, et al. Esophageal stents for the management of benign esophageal strictures in children and adolescents: A systematic review of observational studies. Dysphagia, 2023, 38(3): 744-755. |
| 61. | Vandenplas Y, Hauser B, Devreker T, et al. A biodegradable esophageal stent in the treatment of a corrosive esophageal stenosis in a child. J Pediatr Gastroenterol Nutr, 2009, 49(2): 254-257. |
| 62. | Karakan T, Utku OG, Dorukoz O, et al. Biodegradable stents for caustic esophageal strictures: A new therapeutic approach. Dis Esophagus, 2013, 26(3): 319-322. |
| 63. | Awolaran O, McGuirk S, Arul GS. Biodegradable stents in the management of refractory esophageal strictures in children. J Laparoendosc Adv Surg Tech A, 2020, 30(8): 919-922. |
| 64. | Alberca de Las Parras F, Navalón Rubio M, Egea Valenzuela J. Management of refractory esophageal stenosis in the pediatric age. Rev Esp Enferm Dig, 2016, 108(10): 627-636. |
| 65. | Okata Y, Hisamatsu C, Bitoh Y, et al. Efficacy and histopathological esophageal wall damage of biodegradable esophageal stents for treatment of severe refractory esophageal anastomotic stricture in a child with long gap esophageal atresia. Clin J Gastroenterol, 2014, 7(6): 496-501. |
| 66. | Repici A, Vleggaar FP, Hassan C, et al. Efficacy and safety of biodegradable stents for refractory benign esophageal strictures: The BEST (Biodegradable Esophageal Stent) study. Gastrointest Endosc, 2010, 72(5): 927-934. |
| 67. | Hernandez-Mondragon O, Contreras LG, Pineda OM, et al. Safety and efficacy of biodegradable stents in octogenarian patients with esophageal achalasia. Endosc Int Open, 2021, 9(6): E756-E766. |
| 68. | Maishman T, Sheikh H, Boger P, et al. A phase Ⅱ study of biodegradable stents plus palliative radiotherapy in oesophageal cancer. Clin Oncol (R Coll Radiol), 2021, 33(5): e225-e231. |
| 69. | Mohan BP, Chandan S, Garg R, et al. Lumen-apposing metal stents, fully covered self-expanding metal stents, and biodegradable stents in the management of benign of GI strictures: A systematic review and meta-analysis. J Clin Gastroenterol, 2019, 53(8): 560-573. |
| 70. | Kochhar R, Samanta J, Basha J, et al. Biodegradable stents for caustic esophageal strictures: Do they work? Dysphagia, 2017, 32(4): 575-582. |
| 71. | Walter D, van den Berg MW, Hirdes MM, et al. Dilation or biodegradable stent placement for recurrent benign esophageal strictures: A randomized controlled trial. Endoscopy, 2018, 50(12): 1146-1155. |
| 72. | Ma MX, Chin M, Edmunds S, et al. Gastrointestinal: Severe de novo stricture formation following biodegradable esophageal stent. J Gastroenterol Hepatol, 2016, 31(5): 908. |
| 73. | Lopez-Tobaruela JM, Valverde-Lopez F, Lopez de Hierro-Ruiz M, et al. Hepatic abscess after biodegradable esophageal stent placement: A rare complication. Am J Gastroenterol, 2021, 116(1): 222-223. |
| 74. | Pang M, Bartel MJ, Clayton DB, et al. Selective application of fully covered biliary stents and narrow-diameter esophageal stents for proximal esophageal indications. Endoscopy, 2019, 51(2): 169-173. |
| 75. | Reijm AN, Didden P, Bruno MJ, et al. Early pain detection and management after esophageal metal stent placement in incurable cancer patients: A prospective observational cohort study. Endosc Int Open, 2016, 4(8): E890-E894. |
| 76. | Loff S, Diez O, Ho W, et al. Esophageal diameter as a function of weight in neonates, children and adolescents: Reference values for dilatation of esophageal stenoses. Front Pediatr, 2022 Feb 28: 10: 822271. |
| 77. | Gu Z, Fu J, Lin H, et al. Development of 3D bioprinting: From printing methods to biomedical applications. Asian J Pharm Sci, 2020, 15(5): 529-557. |
| 78. | Assad H, Assad A, Kumar A. Recent Developments in 3D Bio-Printing and Its Biomedical Applications. Pharmaceutics, 2023, 15(1): 255. |
| 79. | Jiang W, Mei H, Zhao S. Applications of 3D bio-printing in tissue engineering and biomedicine. J Biomed Nanotechnol, 2021, 17(6): 989-1006. |
| 80. | Lin M, Firoozi N, Tsai CT, et al. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies. Acta Biomater, 2019, 83: 119-129. |
| 81. | Yu P, Huang S, Yang Z, et al. Biomechanical properties of a customizable TPU/PCL blended esophageal stent fabricated by 3D printing. Mater Today Commun, 2022, 34: 105196. |
| 82. | Fouladian P, Kohlhagen J, Arafat M, et al. Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of oesophageal cancers. Biomater Sci, 2020, 8(23): 6625-6636. |
| 83. | Mei Y, He C, Gao C, et al. 3D-printed degradable anti-tumor scaffolds for controllable drug delivery. Int J Bioprint, 2021, 7(4): 418. |
| 84. | Ha DH, Chae S, Lee JY, et al. Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent. Biomaterials, 2021, 266: 120477. |
| 85. | Noroozi R, Arif ZU, Taghvaei H, et al. 3D and 4D bioprinting technologies: A game changer for the biomedical sector? Ann Biomed Eng, 2023, 51(8): 1683-1712. |
| 86. | Pingale P, Dawre S, Dhapte-Pawar V, et al. Advances in 4D printing: From stimulation to simulation. Drug Deliv Transl Res, 2023, 13(1): 164-188. |
| 87. | Takeoka Y, Matsumoto K, Taniguchi D, et al. Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing. PLoS One, 2019, 14(3): e0211339. |
| 88. | Nam H, Jeong HJ, Jo Y, et al. Multi-layered free-form 3D cell-printed tubular construct with decellularized inner and outer esophageal tissue-derived bioinks. Sci Rep, 2020, 10(1): 7255. |
| 89. | Sriwastwa A, Ravi P, Emmert A, et al. Generative AI for medical 3D printing: A comparison of ChatGPT outputs to reference standard education. 3D Print Med, 2023, 9(1): 21. |
| 90. | Thomas T, Abrams KR, Subramanian V, et al. Esophageal stents for benign refractory strictures: a meta-analysis. Endoscopy, 2011, 43(5): 386-393. |
| 91. | Wang X, Liu H, Hu Z, et al. Individually designed fully covered self-expandable metal stents for pediatric refractory benign esophageal strictures. Sci Rep, 2021, 11(1): 22575. |
| 92. | Siersema PD, Hirdes MM. What is the optimal duration of stent placement for refractory, benign esophageal strictures? Nat Clin Pract Gastroenterol Hepatol, 2009, 6(3): 146-147. |
| 93. | Youn BJ, Kim WS, Cheon JE, et al. Balloon dilatation for corrosive esophageal strictures in children: radiologic and clinical outcomes. Korean J Radiol, 2010, 11(2): 203-210. |
| 94. | 張俊莉, 盧偉, 杜鵬. 經口與經鼻掛線固定預防食管癌覆膜支架移位效果對比觀察. 人民軍醫, 2021, 64(11): 1093-1096. |
| 95. | Vogt F, Stein A, Rettemeier G, et al. Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. Eur Heart J, 2004, 25(15): 1330-1340. |
| 96. | Liu J, Wang Z, Wu K, et al. Paclitaxel or 5-fluorouracil/esophageal stent combinations as a novel approach for the treatment of esophageal cancer. Biomaterials, 2015, 53: 592-599. |
| 97. | van Hal ARL, Pulvirenti R, den Hartog FPJ, et al. The safety of intralesional steroid injections in young children and their effectiveness in anastomotic esophageal strictures-A meta-analysis and systematic review. Front Pediatr, 2022, 9: 825030. |
| 98. | Chai NL, Feng J, Li LS, et al. Effect of polyglycolic acid sheet plus esophageal stent placement in preventing esophageal stricture after endoscopic submucosal dissection in patients with early-stage esophageal cancer: A randomized, controlled trial. World J Gastroenterol, 2018, 24(9): 1046-1055. |
| 99. | Hirdes MM, Vleggaar FP, de Beule M, et al. In vitro evaluation of the radial and axial force of self-expanding esophageal stents. Endoscopy, 2013, 45(12): 997-1005. |
- 1. 柴寧莉, 李隆松, 鄒家樂. 中國食管良惡性狹窄內鏡下防治專家共識意見(2020, 北京). 中華胃腸內鏡電子雜志, 2020, 7(4): 165-175.
- 2. Spaander MCW, van der Bogt RD, Baron TH, et al. Esophageal stenting for benign and malignant disease: European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2021. Endoscopy, 2021, 53(7): 751-762.
- 3. Tandon S, Burnand KM, De Coppi P, et al. Self-expanding esophageal stents for the management of benign refractory esophageal strictures in children: A systematic review and review of outcomes at a single center. J Pediatr Surg, 2019, 54(12): 2479-2486.
- 4. Shahein AR, Krasaelap A, Ng K, et al. Esophageal dilation in children: A state of the art review. J Pediatr Gastroenterol Nutr, 2023, 76(1): 1-8.
- 5. 中華醫學會小兒外科學分會普胸外科學組, 中國醫師協會小兒外科醫師分會心胸外科專委會. 兒童食管狹窄外科處理策略中國專家共識(2023版). 中華小兒外科雜志, 2023, 44(9): 774-783.
- 6. Ruigómez A, García Rodríguez LA, Wallander MA, et al. Esophageal stricture: Incidence, treatment patterns, and recurrence rate. Am J Gastroenterol, 2006, 101(12): 2685-2692.
- 7. McCain S, McCain S, Quinn B, et al. The role of biodegradable stents in the management of benign and malignant oesophageal strictures: A cohort study. Surgeon, 2016, 14(6): 322-326.
- 8. 陳功, 鄭珊. 兒童食管狹窄的病因及診治進展. 臨床小兒外科雜志, 2019, 18(6): 437-441.
- 9. Fugazza A, Repici A. Endoscopic management of refractory benign esophageal strictures. Dysphagia, 2021, 36(3): 504-516.
- 10. Sami SS, Haboubi HN, Ang Y, et al. UK guidelines on oesophageal dilatation in clinical practice. Gut, 2018, 67(6): 1000-1023.
- 11. Desai M, Hamade N, Sharma P. Management of peptic strictures. Am J Gastroenterol, 2020, 115(7): 967-970.
- 12. de Wijkerslooth LR, Vleggaar FP, Siersema PD. Endoscopic management of difficult or recurrent esophageal strictures. Am J Gastroenterol, 2011, 106(12): 2080-2091.
- 13. Alwan M, Giddings CE. Self-dilatation of benign oesophageal strictures: A literature review. ANZ J Surg, 2021, 91(7-8): 1385-1389.
- 14. Yang F, Hu Y, Shi Z, et al. The occurrence and development mechanisms of esophageal stricture: State of the art review. J Transl Med, 2024, 22(1): 123.
- 15. Repici A, Small AJ, Mendelson A, et al. Natural history and management of refractory benign esophageal strictures. Gastrointest Endosc, 2016, 84(2): 222-228.
- 16. Imaz-Iglesia I, García-Pérez S, Nachtnebel A, et al. Biodegradable stents for the treatment of refractory or recurrent benign esophageal stenosis. Expert Rev Med Devices, 2016, 13(6): 583-599.
- 17. Fuccio L, Hassan C, Frazzoni L, et al. Clinical outcomes following stent placement in refractory benign esophageal stricture: A systematic review and meta-analysis. Endoscopy, 2016, 48(2): 141-148.
- 18. Li L, Xu N, Wang P, et al. A novel self-inflatable balloon for treating refractory benign esophageal strictures: A prospective, single-arm, multicenter study. Int J Surg, 2024, 110(4): 2055-2064.
- 19. Kang Y. A review of self-expanding esophageal stents for the palliation therapy of inoperable esophageal malignancies. Biomed Res Int, 2019 Apr 4: 2019: 9265017.
- 20. Frimberger E. Expanding spiral--A new type of prosthesis for the palliative treatment of malignant esophageal stenoses. Endoscopy, 1983, 15 Suppl 1: 213-214.
- 21. Canena JM, Liberato MJ, Rio-Tinto RA, et al. A comparison of the temporary placement of 3 different self-expanding stents for the treatment of refractory benign esophageal strictures: A prospective multicentre study. BMC Gastroenterol, 2012, 12: 70.
- 22. Zhu Y, Yang K, Cheng R, et al. The current status of biodegradable stent to treat benign luminal disease(Review). Mater Today, 2017, 20(9): 516-529.
- 23. 楊立寶, 陳桂, 關靜, 等. 生物可降解材料及其在生物醫學上的應用. 新材料產業, 2018(12): 38-42.
- 24. 楊健, 孟禮飛, 謝曉, 等. 新型可降解支架治療食管吻合口瘺的療效分析. 現代生物醫學進展, 2018, 18(11): 2043-2046.
- 25. Tie D, Guan R, Liu H, et al. In vivo degradability and biocompatibility of a rheo-formed Mg–Zn–Sr alloy for ureteral implantation. J Magnes Alloys, 2022, 10(6): 1631-1639.
- 26. H?nzi AC, Gerber I, Schinhammer M, et al. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater, 2010, 6(5): 1824-1833.
- 27. Bowen PK, Shearier ER, Zhao S, et al. Biodegradable metals for cardiovascular stents: From clinical concerns to recent Zn-alloys. Adv Healthc Mater, 2016, 5(10): 1121-1140.
- 28. Sun Y, Wu H, Wang W, et al. Translational status of biomedical Mg devices in China. Bioact Mater, 201, 4: 358-365.
- 29. Schinhammer M, Gerber I, H?nzi AC, et al. On the cytocompatibility of biodegradable Fe-based alloys. Mater Sci Eng C Mater Biol Appl, 2013, 33(2): 782-789.
- 30. Xu Y, Wang W, Yu F, et al. The enhancement of mechanical properties and uniform degradation of electrodeposited Fe-Zn alloys by multilayered design for biodegradable stent applications. Acta Biomater, 2023, 161: 309-323.
- 31. Scarcello E, Lison D. Are fe-based stenting materials biocompatible? A Critical Review of in vitro and in vivo Studies. J Funct Biomater, 2019, 11(1): 2.
- 32. Md Yusop AH, Ulum MF, Al Sakkaf A, et al. Insight into the bioabsorption of Fe-based materials and their current developments in bone applications. Biotechnol J, 2021, 16(12): e2100255.
- 33. Venezuela J, Dargusch MS. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater, 2019, 87: 1-40.
- 34. Yang K, Ling C, Yuan T, et al. Polymeric biodegradable stent insertion in the esophagus. Polymers (Basel), 2016, 8(5): 158.
- 35. Ciulla MG, Massironi A, Sugni M, et al. Recent advances in the development of biomimetic materials. Gels, 2023, 9(10): 833.
- 36. Alaswad SO, Mahmoud AS, Arunachalam P. Recent advances in biodegradable polymers and their biological applications: A brief review. Polymers (Basel), 2022, 14(22): 4924.
- 37. Ferreira-Silva J, Medas R, Girotra M, et al. Futuristic developments and applications in endoluminal stenting. Gastroenterol Res Pract, 2022, 2022: 6774925.
- 38. Sezer N, Evis Z, Ko M. Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends. J Magnes Alloys, 2021, 9(2): 392-415.
- 39. Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology? Heart, 2003, 89(6): 651-656.
- 40. Yuan T, Yu J, Cao J, et al. Fabrication of a delaying biodegradable magnesium alloy-based esophageal stent via coating elastic polymer. Materials (Basel), 2016, 9(5): 384.
- 41. Yang K, Cao J, Yuan TW, et al. Silicone-covered biodegradable magnesium stent for treating benign esophageal stricture in a rabbit model. World J Gastroenterol, 2019, 25(25): 3207-3217.
- 42. 顧松, 顧洪斌, 馬靖, 等. 可降解鎂合金食管支架治療食管狹窄的動物實驗研究. 臨床小兒外科雜志, 2018, 17(1): 60-65.
- 43. Wang S, Zhang X, Li J, et al. Investigation of Mg-Zn-Y-Nd alloy for potential application of biodegradable esophageal stent material. Bioact Mater, 2020, 5(1): 1-8.
- 44. Liu LL, Qin J, Zeng CH, et al. Biodegradable PTX-PLGA-coated magnesium stent for benign esophageal stricture: An experimental study. Acta Biomater, 2022, 146: 495-505.
- 45. Goldin E, Fiorini A, Ratan Y, et al. A new biodegradable and self-expandable stent for benign esophageal strictures. Gastrointest Endosc, 1996, 43(4): 294.
- 46. Yu X, Wang L, Huang M, et al. A shape memory stent of poly(ε-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J Mater Sci Mater Med, 2012, 23(2): 581-589.
- 47. Chen S, Xiao M, Hou Z, et al. Functionalized TMC and ε-CL elastomers with shape memory and self-healing properties. Front Bioeng Biotechnol, 2023, 11: 1298723.
- 48. Lee J, Kang SK. Principles for controlling the shape recovery and degradation behavior of biodegradable shape-memory polymers in biomedical applications. Micromachines (Basel), 2021, 12(7): 757.
- 49. 顏波, 狄鎮海, 施瑞華, 等. 新型可降解防移位食管支架實驗研究. 介入放射學雜志, 2021, 30(2): 153-157.
- 50. 曹洋, 馮亞東, 焦春花, 等. 分段式可降解食管支架的臨床前評價. 浙江大學學報(醫學版), 2017, 46(6): 649-655.
- 51. Pauli EM, Schomisch SJ, Furlan JP, et al. Biodegradable esophageal stent placement does not prevent high-grade stricture formation after circumferential mucosal resection in a porcine model. Surg Endosc, 2012, 26(12): 3500-3508.
- 52. Martinek J, Dolezel R, Walterova B, et al. Stenting to prevent esophageal stricture after circumferential endoscopic submucosal dissection: An experimental study. Endosc Int Open, 2020, 8(11): E1698-E1706.
- 53. Liu J, Shang L, Liu J, et al. A novel biodegradable esophageal stent: Results from mechanical and animal experiments. Am J Transl Res, 2016, 8(2): 1108-1114.
- 54. Shang L, Pei QS, Xu D, et al. Novel detachable stents for the treatment of benign esophageal strictures. Exp Ther Med, 2020, 19(1): 115-122.
- 55. Fry SW, Fleischer DE. Management of a refractory benign esophageal stricture with a new biodegradable stent. Gastrointest Endosc, 1997, 45(2): 179-182.
- 56. Tanaka T, Takahashi M, Nitta N, et al. Newly developed biodegradable stents for benign gastrointestinal tract stenoses: A preliminary clinical trial. Digestion, 2006, 74(3-4): 199-205.
- 57. Saito Y, Tanaka T, Andoh A, et al. Usefulness of biodegradable stents constructed of poly-l-lactic acid monofilaments in patients with benign esophageal stenosis. World J Gastroenterol, 2007, 13(29): 3977-3980.
- 58. Yano T, Yoda Y, Nonaka S, et al. Pivotal trial of a biodegradable stent for patients with refractory benign esophageal stricture. Esophagus, 2022, 19(3): 516-524.
- 59. Davidson JR, McCluney S, Reddy K, et al. Pediatric esophageal dilatations: A cross-specialty experience. J Laparoendosc Adv Surg Tech A, 2020, 30(2): 206-209.
- 60. Sohouli MH, Alimadadi H, Rohani P, et al. Esophageal stents for the management of benign esophageal strictures in children and adolescents: A systematic review of observational studies. Dysphagia, 2023, 38(3): 744-755.
- 61. Vandenplas Y, Hauser B, Devreker T, et al. A biodegradable esophageal stent in the treatment of a corrosive esophageal stenosis in a child. J Pediatr Gastroenterol Nutr, 2009, 49(2): 254-257.
- 62. Karakan T, Utku OG, Dorukoz O, et al. Biodegradable stents for caustic esophageal strictures: A new therapeutic approach. Dis Esophagus, 2013, 26(3): 319-322.
- 63. Awolaran O, McGuirk S, Arul GS. Biodegradable stents in the management of refractory esophageal strictures in children. J Laparoendosc Adv Surg Tech A, 2020, 30(8): 919-922.
- 64. Alberca de Las Parras F, Navalón Rubio M, Egea Valenzuela J. Management of refractory esophageal stenosis in the pediatric age. Rev Esp Enferm Dig, 2016, 108(10): 627-636.
- 65. Okata Y, Hisamatsu C, Bitoh Y, et al. Efficacy and histopathological esophageal wall damage of biodegradable esophageal stents for treatment of severe refractory esophageal anastomotic stricture in a child with long gap esophageal atresia. Clin J Gastroenterol, 2014, 7(6): 496-501.
- 66. Repici A, Vleggaar FP, Hassan C, et al. Efficacy and safety of biodegradable stents for refractory benign esophageal strictures: The BEST (Biodegradable Esophageal Stent) study. Gastrointest Endosc, 2010, 72(5): 927-934.
- 67. Hernandez-Mondragon O, Contreras LG, Pineda OM, et al. Safety and efficacy of biodegradable stents in octogenarian patients with esophageal achalasia. Endosc Int Open, 2021, 9(6): E756-E766.
- 68. Maishman T, Sheikh H, Boger P, et al. A phase Ⅱ study of biodegradable stents plus palliative radiotherapy in oesophageal cancer. Clin Oncol (R Coll Radiol), 2021, 33(5): e225-e231.
- 69. Mohan BP, Chandan S, Garg R, et al. Lumen-apposing metal stents, fully covered self-expanding metal stents, and biodegradable stents in the management of benign of GI strictures: A systematic review and meta-analysis. J Clin Gastroenterol, 2019, 53(8): 560-573.
- 70. Kochhar R, Samanta J, Basha J, et al. Biodegradable stents for caustic esophageal strictures: Do they work? Dysphagia, 2017, 32(4): 575-582.
- 71. Walter D, van den Berg MW, Hirdes MM, et al. Dilation or biodegradable stent placement for recurrent benign esophageal strictures: A randomized controlled trial. Endoscopy, 2018, 50(12): 1146-1155.
- 72. Ma MX, Chin M, Edmunds S, et al. Gastrointestinal: Severe de novo stricture formation following biodegradable esophageal stent. J Gastroenterol Hepatol, 2016, 31(5): 908.
- 73. Lopez-Tobaruela JM, Valverde-Lopez F, Lopez de Hierro-Ruiz M, et al. Hepatic abscess after biodegradable esophageal stent placement: A rare complication. Am J Gastroenterol, 2021, 116(1): 222-223.
- 74. Pang M, Bartel MJ, Clayton DB, et al. Selective application of fully covered biliary stents and narrow-diameter esophageal stents for proximal esophageal indications. Endoscopy, 2019, 51(2): 169-173.
- 75. Reijm AN, Didden P, Bruno MJ, et al. Early pain detection and management after esophageal metal stent placement in incurable cancer patients: A prospective observational cohort study. Endosc Int Open, 2016, 4(8): E890-E894.
- 76. Loff S, Diez O, Ho W, et al. Esophageal diameter as a function of weight in neonates, children and adolescents: Reference values for dilatation of esophageal stenoses. Front Pediatr, 2022 Feb 28: 10: 822271.
- 77. Gu Z, Fu J, Lin H, et al. Development of 3D bioprinting: From printing methods to biomedical applications. Asian J Pharm Sci, 2020, 15(5): 529-557.
- 78. Assad H, Assad A, Kumar A. Recent Developments in 3D Bio-Printing and Its Biomedical Applications. Pharmaceutics, 2023, 15(1): 255.
- 79. Jiang W, Mei H, Zhao S. Applications of 3D bio-printing in tissue engineering and biomedicine. J Biomed Nanotechnol, 2021, 17(6): 989-1006.
- 80. Lin M, Firoozi N, Tsai CT, et al. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies. Acta Biomater, 2019, 83: 119-129.
- 81. Yu P, Huang S, Yang Z, et al. Biomechanical properties of a customizable TPU/PCL blended esophageal stent fabricated by 3D printing. Mater Today Commun, 2022, 34: 105196.
- 82. Fouladian P, Kohlhagen J, Arafat M, et al. Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of oesophageal cancers. Biomater Sci, 2020, 8(23): 6625-6636.
- 83. Mei Y, He C, Gao C, et al. 3D-printed degradable anti-tumor scaffolds for controllable drug delivery. Int J Bioprint, 2021, 7(4): 418.
- 84. Ha DH, Chae S, Lee JY, et al. Therapeutic effect of decellularized extracellular matrix-based hydrogel for radiation esophagitis by 3D printed esophageal stent. Biomaterials, 2021, 266: 120477.
- 85. Noroozi R, Arif ZU, Taghvaei H, et al. 3D and 4D bioprinting technologies: A game changer for the biomedical sector? Ann Biomed Eng, 2023, 51(8): 1683-1712.
- 86. Pingale P, Dawre S, Dhapte-Pawar V, et al. Advances in 4D printing: From stimulation to simulation. Drug Deliv Transl Res, 2023, 13(1): 164-188.
- 87. Takeoka Y, Matsumoto K, Taniguchi D, et al. Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing. PLoS One, 2019, 14(3): e0211339.
- 88. Nam H, Jeong HJ, Jo Y, et al. Multi-layered free-form 3D cell-printed tubular construct with decellularized inner and outer esophageal tissue-derived bioinks. Sci Rep, 2020, 10(1): 7255.
- 89. Sriwastwa A, Ravi P, Emmert A, et al. Generative AI for medical 3D printing: A comparison of ChatGPT outputs to reference standard education. 3D Print Med, 2023, 9(1): 21.
- 90. Thomas T, Abrams KR, Subramanian V, et al. Esophageal stents for benign refractory strictures: a meta-analysis. Endoscopy, 2011, 43(5): 386-393.
- 91. Wang X, Liu H, Hu Z, et al. Individually designed fully covered self-expandable metal stents for pediatric refractory benign esophageal strictures. Sci Rep, 2021, 11(1): 22575.
- 92. Siersema PD, Hirdes MM. What is the optimal duration of stent placement for refractory, benign esophageal strictures? Nat Clin Pract Gastroenterol Hepatol, 2009, 6(3): 146-147.
- 93. Youn BJ, Kim WS, Cheon JE, et al. Balloon dilatation for corrosive esophageal strictures in children: radiologic and clinical outcomes. Korean J Radiol, 2010, 11(2): 203-210.
- 94. 張俊莉, 盧偉, 杜鵬. 經口與經鼻掛線固定預防食管癌覆膜支架移位效果對比觀察. 人民軍醫, 2021, 64(11): 1093-1096.
- 95. Vogt F, Stein A, Rettemeier G, et al. Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. Eur Heart J, 2004, 25(15): 1330-1340.
- 96. Liu J, Wang Z, Wu K, et al. Paclitaxel or 5-fluorouracil/esophageal stent combinations as a novel approach for the treatment of esophageal cancer. Biomaterials, 2015, 53: 592-599.
- 97. van Hal ARL, Pulvirenti R, den Hartog FPJ, et al. The safety of intralesional steroid injections in young children and their effectiveness in anastomotic esophageal strictures-A meta-analysis and systematic review. Front Pediatr, 2022, 9: 825030.
- 98. Chai NL, Feng J, Li LS, et al. Effect of polyglycolic acid sheet plus esophageal stent placement in preventing esophageal stricture after endoscopic submucosal dissection in patients with early-stage esophageal cancer: A randomized, controlled trial. World J Gastroenterol, 2018, 24(9): 1046-1055.
- 99. Hirdes MM, Vleggaar FP, de Beule M, et al. In vitro evaluation of the radial and axial force of self-expanding esophageal stents. Endoscopy, 2013, 45(12): 997-1005.

