| 1. |
Faust N, Varas F, Kelly LM, et al. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood, 2000, 96(2): 719-726.
|
| 2. |
Orthgiess J, Gericke M, Immig, K, et al. Neurons exhibit Lyz2 promoter activity in vivo: Implications for using LysM-Cre mice in myeloid cell research. Eur J Immunol, 2016, 46(6): 1529-1532.
|
| 3. |
Lee PY, Wang JX, Parisini E, et al. Ly6 family proteins in neutrophil biology. J Leukoc Biol, 2013, 94(4): 585-594.
|
| 4. |
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature, 2013, 496(7446): 445-455.
|
| 5. |
Looney MR, Headley MB. Live imaging of the pulmonary immune environment. Cell Immunol, 2020, 350: 103862.
|
| 6. |
Headley MB, Bins A, Nip A, et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature, 2016, 531(7595): 513-517.
|
| 7. |
Alizadeh-Tabrizi N, Hall S, Lehmann C. Intravital imaging of pulmonary immune response in inflammation and infection. Front Cell Dev Biol, 2021, 8: 620471.
|
| 8. |
Fiole D, Tournier JN, Intravital microscopy of the lung: Minimizing invasiveness. J Biophotonics, 2016, 9(9): 868-878.
|
| 9. |
Ericsson AC, Crim MJ, Franklin CL. A brief history of animal modeling. Mo Med, 2013, 110(3): 201-205.
|
| 10. |
Zhao YH, Qu H, Wang YH, et al. Small rodent models of atherosclerosis. Biomed Pharmacother, 2020, 129: 110426.
|
| 11. |
Vandamme TF. Use of rodents as models of human diseases. J Pharm Bioallied Sci, 2014, 6(1): 2-9.
|
| 12. |
Coste A, Oktay MH, Condeelis JS, et al. Intravital imaging techniques for biomedical and clinical research. Cytometry A, 2020, 97(5): 448-457.
|
| 13. |
Frevert U, Nacer A, Cabrera M, et al. Imaging plasmodium immunobiology in the liver, brain, and lung. Parasitol Int, 2014, 63(1): 171-186.
|
| 14. |
李娟, 關苑君, 梁翠莎, 等. 小鼠雙光子激光掃描顯微鏡活體成像窗口構建技術. 中國醫學物理學雜志, 2022, 39(2): 229-235.
|
| 15. |
Olkon DM, Joannides M, Capillaroscopic appearance of the pulmonary alveoli in the living dog. The Anatomical Record, 1930, 45: 121-127.
|
| 16. |
Macgregor RG, Examination of the pulmonary circulation with the microscope. J Physiol, 1933, 80: 65-77.
|
| 17. |
Hall HL. A study of the pulmonary circulation by the trans-illumination method. Am J Physiol, 1925, 72: 446-457.
|
| 18. |
Hasegawa A, Hayashi K, Kishimoto H, et al. Color-coded real-time cellular imaging of lung T-lymphocyte accumulation and focus formation in a mouse asthma model. J Allergy Clin Immunol, 2010, 125(2): 461-468.
|
| 19. |
Mitsuoka H, Sakurai T, Unno N, et al. Intravital laser confocal microscopy of pulmonary edema resulting from intestinal ischemia-reperfusion injury in the rat. Crit Care Med, 1999, 27(9): 1862-1868.
|
| 20. |
Mitsuoka H, Unno N, Sakurai T, et al. Pathophysiological role of endothelins in pulmonary microcirculatory disorders due to intestinal ischemia and reperfusion. J Surg Res, 1999, 87(2): 143-151.
|
| 21. |
Veith NT, Tschernig T, Gutbier B, et al. Surfactant protein A mediates pulmonary clearance of Staphylococcus aureus. Respir Res, 2014, 15(1): 85.
|
| 22. |
Entenberg D, Voiculescu S, Guo P, et al. A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat Methods, 2018, 15(1): 73-80.
|
| 23. |
Rodriguez-Tirado C, Kitamura T, Kato Y, et al. Long-term high-resolution intravital microscopy in the lung with a vacuum stabilized imaging window. J Vis Exp, 2016, 116: e54603.
|
| 24. |
Tabuchi A, Mertens M, Kuppe H, et al. Intravital microscopy of the murine pulmonary microcirculation. J Appl Physiol, 2008, 104(2): 338-346.
|
| 25. |
楊楨, 蘇波, 鐘康穎, 等. 小鼠肺部微循環活體顯微成像. 華西醫學, 2019, 34(1): 43-49.
|
| 26. |
林曼娜. 熒光顯微鏡的成像原理及其在生物醫學中的應用. 電子顯微鏡學報, 2021, 40(1): 90-93.
|
| 27. |
Podstawka J, Sinha S, Hiroki CH, et al. Marginating transitional B cells modulate neutrophils in the lung during inflammation and pneumonia. J Exp Med, 2021, 218(9): e20210409.
|
| 28. |
Kim SJ, Carestia A, McDonald B, et al. Platelet-mediated NET release amplifies coagulopathy and drives lung pathology during severe influenza infection. Front Immunol, 2021, 12: 772859.
|
| 29. |
Barkaway A, Rolas L, Joulia R, et al. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage. Immunity, 2021, 54(7): 1494-1510.
|
| 30. |
Park I, Kim M, Choe K, et al. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur Respir J, 2019, 53(3): 1800786.
|
| 31. |
Lefrancais E, Ortiz-Munoz G, Caudrillier A, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 2017, 544(7648): 105-109.
|
| 32. |
Kreisel D, Nava RG, Li W, et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc Natl Acad Sci USA, 2010, 107(42): 18073-18078.
|
| 33. |
Ueki H, Wang IH, Zhao DM, et al. Multicolor two-photon imaging of in vivo cellular pathophysiology upon influenza virus infection using the two-photon IMPRESS. Nat Protoc, 2020, 15(3): 1041-1065.
|
| 34. |
Cleary SJ, Hobbs C, Amison RT, et al. LPS-induced lung platelet recruitment occurs independently from neutrophils, PSGL-1, and P-selectin. Am J Respir Cell Mol Biol, 2019, 61(2): 232-243.
|
| 35. |
Ichise H, Tsukamato S, Hirashimo T, et al. Functional visualization of NK cell-mediated killing of metastatic single tumor cells. Elife, 2022, 11: e76269.
|
| 36. |
Jeong S, Park SA, Park I, et al. PM2.5 exposure in the respiratory system induces distinct inflammatory signaling in the lung and the liver of mice. J Immunol Res, 2019: 3486841.
|
| 37. |
Castanheira FVS, Nguyen R, Willson M, et al. Intravital imaging of three different microvascular beds in SARS-CoV-2 infected mice. Blood Adv, 2023.doi: 10.1182/bloodadvances.2022009430.
|
| 38. |
Ling LQ, Zhang J, Li YS, et al. Platelets play a dual role in the pathophysiology of transfusion-related acute lung injury. Respir Physiol Neurobiol, 2023, 309: 104004.
|
| 39. |
Kim HK, Missiakas D, Schneewind O. Mouse models for infectious diseases caused by Staphylococcus aureus. J Immunol Methods, 2014, 410: 88-99.
|
| 40. |
Lefrancais E, Mallavia B, Zhuo H, et al. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight, 2018, 3(3): e98178.
|
| 41. |
Neupane AS, Willson M, Chojnacki AK, et al. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell, 2020, 183(1): 110-125.
|
| 42. |
Naumenko V, Van S, Dastidar H, et al. Visualizing oncolytic virus-host interactions in live mice using intravital microscopy. Mol Ther Oncolytics, 2018, 10: 14-27.
|
| 43. |
Brown MB, Hunt WR, Noe JE, et al. Loss of cystic fibrosis transmembrane conductance regulator impairs lung endothelial cell barrier function and increases susceptibility to microvascular damage from cigarette smoke. Pulm Circ, 2014, 4(2): 260-268.
|
| 44. |
張宇, 盧笑暉, 連新寶. 膿毒癥急性肺損傷的發生機制及治療研究進展. 解放軍醫學雜志, 2021, 46(11): 1159-1164.
|
| 45. |
Yipp BG, Kim JH, Lima R, et al. The lung is a host defense niche for immediate neutrophil-mediated vascular protection. Sci Immunol, 2017, 2(10): eaam8929.
|
| 46. |
Masterson CH, Curley GF, Laffey JG. Modulating the distribution and fate of exogenously delivered MSCs to enhance therapeutic potential: Knowns and unknowns. Intensive Care Med Exp, 2019, 7: 41.
|