| 1. |
Beevers G, Lip GY, O'Brien E. ABC of hypertension: Blood pressure measurement. Part Ⅱ-conventional sphygmomanometry: Technique of auscultatory blood pressure measurement. BMJ, 2001, 322(7293): 1043-1047.
|
| 2. |
代小莉, 李作君. 特殊人群的血壓測量. 世界最新醫學信息文摘, 2015, 15(37): 98.
|
| 3. |
Babbs CF. The origin of Korotkoff sounds and the accuracy of auscultatory blood pressure measurements. J Am Soc Hypertens, 2015, 9(12): 935-950.
|
| 4. |
《中國高血壓基層管理指南》修訂委員會. 中國高血壓基層管理指南(2014年修訂版). 中華高血壓雜志, 2015, 23(1): 24-43.
|
| 5. |
Venet R, Miric D, Pavie A, et al. Korotkoff sound: The cavitation hypothesis. Med Hypotheses, 2000, 55(2): 141-146.
|
| 6. |
王文, 張繼忠, 孫寧玲, 等. 中國血壓測量指南. 中華血壓雜志, 2011, 19(12): 1101-1115.
|
| 7. |
Celler BG, Butlin M, Argha A, et al. Are Korotkoff sounds reliable markers for accurate estimation of systolic and diastolic pressure using brachial cuff sphygmomanometry? IEEE Trans Biomed Eng, 2021, 68(12): 3593-3601.
|
| 8. |
Brown MA, Reiter L, Smith B, et al. Measuring blood pressure in pregnant women: A comparison of direct and indirect methods. Am J Obstet Gynecol, 1994, 171(3): 661-667.
|
| 9. |
Zhang M, Zhang X, Chen F, et al. Effects of room environment and nursing experience on clinical blood pressure measurement: An observational study. Blood Press Monit, 2017, 22(2): 79-85.
|
| 10. |
Pickering TG, Hall JE, Appel LJ, et al. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation, 2005, 111(5): 697-716.
|
| 11. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. CVPR, 2016: 770-778.
|
| 12. |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735-1780.
|
| 13. |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639): 115-118.
|
| 14. |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 2016, 316(22): 2402-2410.
|
| 15. |
王永軍, 黃芳琳, 黃珊, 等. 基于融合多網絡深層卷積特征和稀疏雙關系正則化方法的乳腺癌圖像分類研究. 中國生物醫學工程學報, 2020, 39(5): 532-540.
|
| 16. |
汪佳衡, 王躍明, 姚林. 基于濾波器組長短時記憶網絡的腦電信號情緒識別. 生物醫學工程學雜志, 2021, 38(3): 447-454.
|
| 17. |
Shivam A, Kiran K, Devanjali R. Security threat sounds classification using Neural Network. INDIACom, 2021: 690-694.
|
| 18. |
Tohru K, Naoki A et al. Automatic classification of respiratory sounds considering time series information based on VGG16 with LSTM. ICCAS, 2020: 423-426.
|
| 19. |
李偉, 楊向東, 陳懇. 基于CNN和RNN聯合網絡的心音自動分類. 計算機工程與設計, 2020, 41(1): 46-51.
|
| 20. |
Deng L, Hinton G, Kingsbury B. New types of deep neural network learning for speech recognition and related applications: An overview. ICASSP, 2013: 8599-8603.
|
| 21. |
Pan F, He P, Liu C, et al. Variation of the Korotkoff stethoscope sounds during blood pressure measurement: Analysis using a convolutional neural network. IEEE J Biomed Health Inform, 2017, 21(6): 1593-1598.
|
| 22. |
Park DK, Kang JH, Kim IY, et al. Novel method of automatic auscultation for blood pressure measurement using pulses in cuff pressure and korotkoff sound. CIC, 2008: 181-184.
|
| 23. |
Pan F, He PY, Wang H, et al. Development and validation of a deep learning-based automatic auscultatory blood pressure measurement method. Biomed Signal Process Control, 2021, 68: 102742.
|
| 24. |
Dziban N, Agung WS, Tati LER. Blood pressure measuring device based on Korotkoff sound’s tapping period and frequency detection. ISITIA, 2020: 158-163.
|
| 25. |
Allen J, Gehrke T, O'Sullivan JJ, et al. Characterization of the Korotkoff sounds using joint time-frequency analysis. Physiol Meas, 2004, 25(1): 107-117.
|