| 1. |
GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, 396(10258): 1204-1222.
|
| 2. |
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2019, 394(10204): 1145-1158.
|
| 3. |
Paraskevas KI, Veith FJ, Spence JD. How to identify which patients with asymptomatic carotid stenosis could benefit from endarterectomy or stenting. Stroke Vasc Neurol, 2018, 3(2): 92-100.
|
| 4. |
Naylor AR, Ricco JB, de Borst GJ, et al. Editor's Choice—Management of atherosclerotic carotid and vertebral artery disease: 2017 clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg, 2018, 55(1): 3-81.
|
| 5. |
李洪, 韓路, 李響, 等. 影像組學輔助磨玻璃結節診斷的研究進展. 中國胸心血管外科臨床雜志, 2019, 26(8): 805-809.
|
| 6. |
毛咪咪, 李海明, 石健, 等. 基于多序列MRI影像組學列線圖預測上皮性卵巢癌患者對鉑類藥物化療的敏感性. 中華醫學雜志, 2022, 102(3): 201-208.
|
| 7. |
吳曉璐, 徐秋貞, 陳文達, 等. 基于影像組學的肺亞實性結節侵襲性預測模型建立及分析. 中華醫學雜志, 2022, 102(3): 209-215.
|
| 8. |
Zhang R, Zhang Q, Ji A, et al. Identification of high-risk carotid plaque with MRI-based radiomics and machine learning. Eur Radiol, 2021, 31(5): 3116-3126.
|
| 9. |
Chen S, Liu C, Chen X, et al. A radiomics approach to assess high risk carotid plaques: A non-invasive imaging biomarker, retrospective study. Front Neurol, 2022, 13: 788652.
|
| 10. |
Huang Z, Cheng XQ, Liu HY, et al. Relation of carotid plaque features detected with ultrasonography-based radiomics to clinical symptoms. Transl Stroke Res, 2021: 10.1007/s12975-021-00963-9.
|
| 11. |
Acharya UR, Sree SV, Mookiah MR, et al. Computed tomography carotid wall plaque characterization using a combination of discrete wavelet transform and texture features: A pilot study. Proc Inst Mech Eng H, 2013, 227(6): 643-654.
|
| 12. |
Zaccagna F, Ganeshan B, Arca M, et al. CT texture-based radiomics analysis of carotid arteries identifies vulnerable patients: A preliminary outcome study. Neuroradiology, 2021, 63(7): 1043-1052.
|
| 13. |
夏冰清, 李翠萍, 錢朝霞, 等. 基于機器學習的影像組學模型預測三陰性乳腺癌新輔助化療遠期預后的應用價值. 中華放射學雜志, 2021, 55(10): 1059-1064.
|
| 14. |
North American Symptomatic Carotid Endarterectomy Trial Collaborators, Barnett HJM, Taylor DW, et al. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med, 1991, 325(7): 445-453.
|
| 15. |
中華醫學會外科學分會血管外科學組. 頸動脈狹窄診治指南. 中華血管外科雜志, 2017, 2(2): 78-84.
|
| 16. |
Baradaran H, Gupta A. Carotid vessel wall imaging on CTA. AJNR Am J Neuroradiol, 2020, 41(3): 380-386.
|
| 17. |
Baessler B, Luecke C, Lurz J, et al. Cardiac MRI and texture analysis of myocardial T1 and T2 maps in myocarditis with acute versus chronic symptoms of heart failure. Radiology, 2019, 292(3): 608-617.
|
| 18. |
Ekert K, Hinterleitner C, Baumgartner K, et al. Extended texture analysis of non-enhanced whole-body MRI image data for response assessment in multiple myeloma patients undergoing systemic therapy. Cancers (Basel), 2020, 12(3): 761.
|
| 19. |
Heo J, Yoon JG, Park H, et al. Machine learning-based model for prediction of outcomes in acute stroke. Stroke, 2019, 50(5): 1263-1265.
|
| 20. |
Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol, 2019, 110: 12-22.
|