| 1. | Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int J Stroke, 2021, 16(2): 217-221. | 
				                                                        
				                                                            
				                                                                | 2. | Dilaveris PE, Kennedy HL. Silent atrial fibrillation: Epidemiology, diagnosis, and clinical impact. Clin Cardiol, 2017, 40(6): 413-418. | 
				                                                        
				                                                            
				                                                                | 3. | Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): A community-based cohort study Lancet, 2009, 373(9665): 739-745. | 
				                                                        
				                                                            
				                                                                | 4. | Chamberlain AM, Agarwal SK, Folsom AR, et al. A clinical risk score for atrial fibrillation in a biracial prospective cohort (from the Atherosclerosis Risk in Communities study). Am J Cardiol, 2011, 107(1): 85-91. | 
				                                                        
				                                                            
				                                                                | 5. | Alonso A, Krijthe BP, Aspelund T, et al. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: The CHARGE‐AF consortium. J Am Heart Ass, 2013, 2(2): e000102. | 
				                                                        
				                                                            
				                                                                | 6. | Li Y G, Pastori D, Farcomeni A, et al. A simple clinical risk score (C2HEST) for predicting incident atrial fibrillation in Asian subjects: Derivation in 471, 446 Chinese subjects, with internal validation and external application in 451, 199 Korean subjects. Chest, 2019, 155(3): 510-518. | 
				                                                        
				                                                            
				                                                                | 7. | Suenari K, Chao TF, Liu CJ, et al. Usefulness of HATCH score in the prediction of new-onset atrial fibrillation for Asians. Medicine, 2017, 96(1): e5597. | 
				                                                        
				                                                            
				                                                                | 8. | Tseng AS, Noseworthy PA. Prediction of atrial fibrillation using machine learning: A review. Front Physiol, 2021, 12: 752317. | 
				                                                        
				                                                            
				                                                                | 9. | Hill NR, Ayoubkhani D, McEwan P, et al. Predicting atrial fibrillation in primary care using machine learning. PLoS one, 2019, 14(11): e0224582. | 
				                                                        
				                                                            
				                                                                | 10. | Tiwari P, Colborn KL, Smith DE, et al. Assessment of a machine learning model applied to harmonized electronic health record data for the prediction of incident atrial fibrillation. JAMA Netw Open, 2020, 3(1): e1919396-e1919396. | 
				                                                        
				                                                            
				                                                                | 11. | Sekelj S, Sandler B, Johnston E, et al. Detecting undiagnosed atrial fibrillation in UK primary care: Validation of a machine learning prediction algorithm in a retrospective cohort study. Eur J Prev Cardiol, 2021, 28(6): 598-605. | 
				                                                        
				                                                            
				                                                                | 12. | Nakatani Y, Sakamoto T, Yamaguchi Y, et al. Left atrial wall thickness is associated with the low-voltage area in patients with paroxysmal atrial fibrillation. J Interv Card Electrophysiol, 2020, 58(3): 315-321. | 
				                                                        
				                                                            
				                                                                | 13. | Siebermair J, Suksaranjit P, McGann CJ, et al. Atrial fibrosis in non–atrial fibrillation individuals and prediction of atrial fibrillation by use of late gadolinium enhancement magnetic resonance imaging. J Cardiovasc Electrophysiol, 2019, 30(4): 550-556. | 
				                                                        
				                                                            
				                                                                | 14. | Dawwas GK, Barnes GD. Outcomes of direct oral anticoagulants in patients with atrial fibrillation and valvular heart disease. Curr Cardiol Rep, 2022: 1-8. | 
				                                                        
				                                                            
				                                                                | 15. | 吳越峰, 王琪, 吳明. 機器學習技術在食管癌研究領域中應用的現狀與展望. 中國胸心血管外科臨床雜志, 2022, 29(6): 770-776. | 
				                                                        
				                                                            
				                                                                | 16. | Batista GE, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD explorations. newsletter, 2004, 6(1): 20-29. | 
				                                                        
				                                                            
				                                                                | 17. | Breiman L. Bagging predictors. Machine Learning, 1996, 24(2): 123-140. | 
				                                                        
				                                                            
				                                                                | 18. | Bühlmann P, Yu B. Boosting Wiley Interdisciplinary Reviews. Computational Statistics, 2010, 2(1): 69-74. | 
				                                                        
				                                                            
				                                                                | 19. | Breiman L. Random forests. Machine Learning, 2001, 45(1): 5-32. | 
				                                                        
				                                                            
				                                                                | 20. | Chen T, Guestrin C. Xgboost: A scalable tree boosting system//Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016: 785-794. | 
				                                                        
				                                                            
				                                                                | 21. | Ke G, Meng Q, Finley T, et al. Lightgbm: A highly efficient gradient boosting decision tree. 31st Annual Conference on Neural Information Processing Systems (NIPS), 2017, 30: 3146-1354. | 
				                                                        
				                                                            
				                                                                | 22. | Lundberg SM, Lee S I. A unified approach to interpreting model predictions. 31st Annual Conference on Neural Information Processing Systems (NIPS), 2017, 30: 4765-4774. | 
				                                                        
				                                                            
				                                                                | 23. | Fawcett T. An introduction to ROC analysis pattern recognition letters, 2006, 27(8): 861-874. | 
				                                                        
				                                                            
				                                                                | 24. | Ozenne B, Subtil F, Maucort-Boulch D. The precision–recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases. J Clin Epidemiol, 2015, 68(8): 855-859. | 
				                                                        
				                                                            
				                                                                | 25. | Boyd K, Eng KH, Page CD. Area under the precision-recall curve: point estimates and confidence intervals//Joint European conference on machine learning and knowledge discovery in databases. Springer: Berlin, Heidelberg, 2013. 451-466. | 
				                                                        
				                                                            
				                                                                | 26. | Seewoester T, Spampinato RA, Sommer P, et al. Left atrial size and total atrial emptying fraction in atrial fibrillation progression. Heart Rhythm, 2019, 16(11): 1605-1610. | 
				                                                        
				                                                            
				                                                                | 27. | Cui Q, Zhang W, Wang H, et al. Left and right atrial size and the occurrence predictors in patients with paroxysmal atrial fibrillation. Int J Cardiol, 2008, 130(1): 69-71. | 
				                                                        
				                                                            
				                                                                | 28. | Burstein B, Nattel S. Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol, 2008, 51(8): 802-809. | 
				                                                        
				                                                            
				                                                                | 29. | Qiu D, Peng L, Ghista DN, et al. Left atrial remodeling mechanisms associated with atrial fibrillation. Cardiovasc Eng Technol, 2021, 12(3): 361-372. | 
				                                                        
				                                                            
				                                                                | 30. | Vaziri SM, Larson MG, Benjamin EJ, et al. Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation, 1994, 89(2): 724-730. | 
				                                                        
				                                                            
				                                                                | 31. | Kalifa J, Jalife J, Zaitsev AV, et al. Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation, 2003, 108(6): 668-671. | 
				                                                        
				                                                            
				                                                                | 32. | van Brakel TJ, van der Krieken T, Westra SW, et al. Fibrosis and electrophysiological characteristics of the atrial appendage in patients with atrial fibrillation and structural heart disease. J Interv Card Electrophysiol, 2013, 38(2): 85-93. | 
				                                                        
				                                                            
				                                                                | 33. | Staerk L, Sherer JA, Ko D, et al. Atrial fibrillation: Epidemiology, pathophysiology, and clinical outcomes. Circ Res, 2017, 120(9): 1501-1517. | 
				                                                        
				                                                            
				                                                                | 34. | Jorfida M, Antolini M, Cerrato E, et al. Cryptogenic ischemic stroke and prevalence of asymptomatic atrial fibrillation: A prospective study. J Cardiovasc Med (Hagerstown), 2016, 17(12): 863-869. | 
				                                                        
				                                                            
				                                                                | 35. | Christensen LM, Krieger DW, H?jberg S, et al. Paroxysmal atrial fibrillation occurs often in cryptogenic ischaemic stroke. Final results from the SURPRISE study. Eur J Neurol, 2014, 21(6): 884-889. | 
				                                                        
				                                                            
				                                                                | 36. | 何凱悅, 楊翠微. 基于心外膜標測的心房易顫性評估. 生物醫學工程學雜志, 2020, 37(3): 487-495, 501. |