| 1. | Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin, 2015, 65(2): 87-108. | 
				                                                        
				                                                            
				                                                                | 2. | Lin Y, Totsuka Y, Shan B, et al. Esophageal cancer in high-risk areas of China: Research progress and challenges. Ann Epidemiol, 2017, 27(3): 215-221. | 
				                                                        
				                                                            
				                                                                | 3. | Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma. Lancet, 2013, 381(9864): 400-412. | 
				                                                        
				                                                            
				                                                                | 4. | 李珊, 陳霖, 張宇航, 等. 早期食管癌: 內鏡還是外科手術? 中國胸心血管外科臨床雜志, 2020, 27(10): 1223-1227. | 
				                                                        
				                                                            
				                                                                | 5. | Thakkar SJ, Kochhar GS. Artificial intelligence for real-time detection of early esophageal cancer: Another set of eyes to better visualize. Gastrointest Endosc, 2020, 91(1): 52-54. | 
				                                                        
				                                                            
				                                                                | 6. | de Souza LA, Palm C, Mendel R, et al. A survey on Barrett's esophagus analysis using machine learning. Comput Biol Med, 2018, 96: 203-213. | 
				                                                        
				                                                            
				                                                                | 7. | Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 2011, 155(8): 529-536. | 
				                                                        
				                                                            
				                                                                | 8. | Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pat Recog, 1997, 30(7): 1145-1159. | 
				                                                        
				                                                            
				                                                                | 9. | Noma H, Matsushima Y, Ishii R. Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Commun Stat Case Stud Data Anal Appl, 2021, 7: 344-358. | 
				                                                        
				                                                            
				                                                                | 10. | Kumagai Y, Takubo K, Kawada K, et al. Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus. Esophagus, 2019, 16(2): 180-187. | 
				                                                        
				                                                            
				                                                                | 11. | Horie Y, Yoshio T, Aoyama K, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc, 2019, 89(1): 25-32. | 
				                                                        
				                                                            
				                                                                | 12. | de Groof J, van der Sommen F, van der Putten J, et al. The Argos project: The development of a computer-aided detection system to improve detection of Barrett's neoplasia on white light endoscopy. United European Gastroenterol J, 2019, 7(4): 538-547. | 
				                                                        
				                                                            
				                                                                | 13. | Cai SL, Li B, Tan WM, et al. Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video). Gastrointest Endosc, 2019, 90(5): 745-753. | 
				                                                        
				                                                            
				                                                                | 14. | Fonollà R, Scheeve T, Struyvenberg MR,  et al.  Ensemble of deep con-volutional neural networks for classification of early Barrett's neopla-sia using volumetric laser endomicroscopy. Appl Sci, 2019, 9: 2183. | 
				                                                        
				                                                            
				                                                                | 15. | 石善江, 王宏光, 劉時助, 等. 應用卷積神經網絡的人工智能技術在早期食管癌診斷中的臨床分析. 中外醫療, 2019, 38(18): 7-9, 16. | 
				                                                        
				                                                            
				                                                                | 16. | Ohmori M, Ishihara R, Aoyama K, et al. Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointest Endosc, 2020, 91(2): 301-309. | 
				                                                        
				                                                            
				                                                                | 17. | Guo L, Xiao X, Wu C, et al. Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest Endosc, 2020, 91(1): 41-51. | 
				                                                        
				                                                            
				                                                                | 18. | Fukuda H, Ishihara R, Kato Y, et al. Comparison of performances of artificial intelligence versus expert endoscopists for real-time assisted diagnosis of esophageal squamous cell carcinoma (with video). Gastrointest Endosc, 2020, 92(4): 848-855. | 
				                                                        
				                                                            
				                                                                | 19. | Tokai Y, Yoshio T, Aoyama K, et al. Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma. Esophagus, 2020, 17(3): 250-256. | 
				                                                        
				                                                            
				                                                                | 20. | Liu G, Hua J, Wu Z, et al. Automatic classification of esophageal lesions in endoscopic images using a convolutional neural network. Ann Transl Med, 2020, 8(7): 486. | 
				                                                        
				                                                            
				                                                                | 21. | Hashimoto R, Requa J, Dao T, et al. Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett's esophagus (with video). Gastrointest Endosc, 2020, 91(6): 1264-1271. | 
				                                                        
				                                                            
				                                                                | 22. | de Groof AJ, Struyvenberg MR, Fockens KN, et al. Deep learning algorithm detection of Barrett's neoplasia with high accuracy during live endoscopic procedures: A pilot study (with video). Gastrointest Endosc, 2020, 91(6): 1242-1250. | 
				                                                        
				                                                            
				                                                                | 23. | de Groof AJ, Struyvenberg MR, van der Putten J, et al. Deep-learning system detects neoplasia in patients with Barrett's esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking. Gastroenterology, 2020, 158(4): 915-929. | 
				                                                        
				                                                            
				                                                                | 24. | Yang XX, Li Z, Shao XJ, et al. Real-time artificial intelligence for endoscopic diagnosis of early esophageal squamous cell cancer (with video). Dig Endosc, 2021, 33(7): 1075-1084. | 
				                                                        
				                                                            
				                                                                | 25. | Ebigbo A, Mendel R, Probst A, et al. Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus. Gut, 2020, 69(4): 615-616. | 
				                                                        
				                                                            
				                                                                | 26. | Iwagami H, Ishihara R, Aoyama K, et al. Artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma. J Gastroenterol Hepatol, 2021, 36(1): 131-136. | 
				                                                        
				                                                            
				                                                                | 27. | Wei WQ, Chen ZF, He YT, et al. Long-term follow-up of a community assignment, one-time endoscopic screening study of esophageal cancer in China. J Clin Oncol, 2015, 33(17): 1951-1957. | 
				                                                        
				                                                            
				                                                                | 28. | Mehrer J, Spoerer CJ, Jones EC, et al. An ecologically motivated image dataset for deep learning yields better models of human vision. Proc Natl Acad Sci U S A, 2021, 118(8): e2011417118. | 
				                                                        
				                                                            
				                                                                | 29. | 付一鳴, 劉曉燕, 韓澤龍, 等. 人工智能輔助內鏡在消化道早癌篩查應用研究進展. 中華消化內鏡雜志, 2019, 36(4): 296-299. | 
				                                                        
				                                                            
				                                                                | 30. | 王智杰, 高杰, 孟茜茜, 等. 基于深度學習的人工智能技術在早期胃癌診斷中的應用. 中華消化內鏡雜志, 2018, 35(8): 551-556. | 
				                                                        
				                                                            
				                                                                | 31. | 李幼平, 主編. 實用循證醫學. 北京: 人民衛生出版社, 2018. | 
				                                                        
				                                                            
				                                                                | 32. | 中華醫學會消化內鏡學分會消化系早癌內鏡診斷與治療協作組, 中華醫學會消化病學分會消化道腫瘤協作組, 中華醫學會消化病學分會消化病理學組. 中國早期食管鱗狀細胞癌及癌前病變篩查與診治共識(2015年, 北京). 中華消化內鏡雜志, 2016, 33(1): 3-18. | 
				                                                        
				                                                            
				                                                                | 33. | Akutsu Y, Uesato M, Shuto K, et al. The overall prevalence of metastasis in T1 esophageal squamous cell carcinoma: A retrospective analysis of 295 patients. Ann Surg, 2013, 257(6): 1032-1038. | 
				                                                        
				                                                            
				                                                                | 34. | Kitagawa Y, Uno T, Oyama T, et al. Esophageal cancer practice guidelines 2017 edited by the Japan esophageal society: Part 2. Esophagus, 2019, 16(1): 25-43. | 
				                                                        
				                                                            
				                                                                | 35. | Everson M, Herrera L, Li W, et al. Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: A proof-of-concept study. United European Gastroenterol J, 2019, 7(2): 297-306. |