| 1. |
Bi X, Yang C, Song Y, et al. Quantitative fragmented QRS has a good diagnostic value on myocardial fibrosis in hypertrophic obstructive cardiomyopathy based on clinical-pathological study. BMC Cardiovasc Disord, 2020, 20(1): 298.
|
| 2. |
Raman B, Ariga R, Spartera M, et al. Progression of myocardial fibrosis in hypertrophic cardiomyopathy: Mechanisms and clinical implications. Eur Heart J Cardiovasc Imaging, 2019, 20(2): 157-167.
|
| 3. |
Melacini P, Basso C, Angelini A, et al. Clinicopathological profiles of progressive heart failure in hypertrophic cardiomyopathy. Eur Heart J, 2010, 31(17): 2111-2123.
|
| 4. |
張艷, 吳昆華, 李清, 等. 肥厚型心肌病患者心肌纖維化范圍的相關因素分析. 中華心血管病雜志, 2021, 49(1): 31-36.
|
| 5. |
Olivotto I, Maron BJ, Appelbaum E, et al. Spectrum and clinical significance of systolic function and myocardial fibrosis assessed by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol, 2010, 106(2): 261-267.
|
| 6. |
張沫, 孫筱璐, 吳桂鑫, 等. 不同類型的非梗阻性肥厚型心肌病患者的臨床及遺傳學特征. 中華心血管病雜志, 2021, 49(6): 593-600.
|
| 7. |
Huang L, Ran L, Zhao P, et al. MRI native T1 and T2 mapping of myocardial segments in hypertrophic cardiomyopathy: Tissue remodeling manifested prior to structure changes. Br J Radiol, 2019, 92(1104): 20190634.
|
| 8. |
周穎, 袁建松, 陳游洲, 等. Apelin通過TGF β-smads信號通路抑制肥厚型心肌病轉基因小鼠心肌纖維化. 中華心力衰竭和心肌病雜志, 2017, 1(1): 32-39.
|
| 9. |
Olson EN. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med, 2014, 6(239): 239ps3.
|
| 10. |
Bittencourt MI, Cader SA, Araújo DV, et al. Role of myocardial fibrosis in hypertrophic cardiomyopathy: A systematic review and updated meta-analysis of risk markers for sudden death. Arq Bras Cardiol, 2019, 112(3): 281-289.
|
| 11. |
陳鳳梅, 魯星琴, 姚亞麗. 主動脈彈性與肥厚型心肌病及其心肌纖維化的關系. 國際心血管病雜志, 2020, 47(4): 207-210.
|
| 12. |
Moravsky G, Ofek E, Rakowski H, et al. Myocardial fibrosis in hypertrophic cardiomyopathy: Accurate reflection of histopathological findings by CMR. JACC Cardiovasc Imaging, 2013, 6(5): 587-596.
|
| 13. |
Gy?ngy?si M, Winkler J, Ramos I, et al. Myocardial fibrosis: Biomedical research from bench to bedside. Eur J Heart Fail, 2017, 19(2): 177-191.
|
| 14. |
Nguyen MN, Kiriazis H, Gao XM, et al. Cardiac fibrosis and arrhythmogenesis. Compr Physiol, 2017, 7(3): 1009-1049.
|
| 15. |
Stempien-Otero A, Kim DH, Davis J. Molecular networks underlying myofibroblast fate and fibrosis. J Mol Cell Cardiol, 2016, 97: 153-161.
|
| 16. |
Travers JG, Kamal FA, Robbins J, et al. Cardiac fibrosis: The fibroblast awakens. Circ Res, 2016, 118(6): 1021-1040.
|
| 17. |
史承勇, 王波, 郭顯, 等. 鞘鞍醇激酶-2在轉化生長因子-β1誘導心臟成纖維細胞增殖與活化過程中作用. 臨床軍醫雜志, 2019, 47(5): 525-528, 531.
|
| 18. |
張利芬, 李彬彬, 余宏宇. MicroRNA-484通過靶向肝星狀細胞中Fis1調控肝纖維化進程. 第二軍醫大學學報, 2017, 38(9): 1146-1151.
|
| 19. |
黃秀, 張洋洋, 朱曉宇, 等. TGF-β1/Smads信號通路及其與腎臟纖維化關系的研究進展. 山東醫藥, 2019, 59(21): 103-107.
|
| 20. |
Inwood S, Buehler E, Betenbaugh M, et al. Identifying HIPK1 as target of miR-22-3p enhancing recombinant protein production from HEK 293 cell by using microarray and HTP siRNA screen. Biotechnol J. 2018, 13: 1-17.
|
| 21. |
Hong Y, Cao H, Wang Q, et al. MiR-22 may suppress fibrogenesis by targeting TGFβR I in cardiac fibroblasts. Cell Physiol Biochem, 2016, 40(6): 1345-1353.
|