| 1. | Sade RM, Castaneda AR. Recent advances in cardiac surgery in the young infant. Surg Clin North Am, 1976, 56(2): 451-465. | 
				                                                        
				                                                            
				                                                                | 2. | Waterbury T, Clark TJ, Niles S, et al. Rat model of cardiopulmonary bypass for deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg, 2011, 141(6): 1549-1551. | 
				                                                        
				                                                            
				                                                                | 3. | Rein JG, Freed MD, Norwood WI, et al. Early and late results of closure of ventricular septal defect in infancy. Ann Thorac Surg, 1977, 24(1): 19-27. | 
				                                                        
				                                                            
				                                                                | 4. | Zhu X, Ji B, Liu J, et al. Establishment of a novel rat model without blood priming during normothermic cardiopulmonary bypass. Perfusion, 2014, 29(1): 63-69. | 
				                                                        
				                                                            
				                                                                | 5. | Jiang X, Gu T, Liu Y, et al. A novel augmented venous-drainage model of cardiopulmonary bypass for deep hypothermic circulatory arrest without blood priming. Perfusion, 2018, 33(4): 297-302. | 
				                                                        
				                                                            
				                                                                | 6. | Shim JK, Ma Q, Zhang Z, et al. Effect of pregabalin on cerebral outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats. J Thorac Cardiovasc Surg, 2014, 148(1): 298-303. | 
				                                                        
				                                                            
				                                                                | 7. | Liu M, Zeng Q, Li Y, et al. Neurologic recovery after deep hypothermic circulatory arrest in rats: A description of a long-term survival model without blood priming. Artif Organs, 2019, 43(6): 551-560. | 
				                                                        
				                                                            
				                                                                | 8. | Jungwirth B, Mackensen GB, Blobner M, et al. Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: Description of a new model. J Thorac Cardiovasc Surg, 2006, 131(4): 805-812. | 
				                                                        
				                                                            
				                                                                | 9. | Engels M, Bilgic E, Pinto A, et al. A cardiopulmonary bypass with deep hypothermic circulatory arrest rat model for the investigation of the systemic inflammation response and induced organ damage. J Inflamm (Lond), 2014, 11: 26. | 
				                                                        
				                                                            
				                                                                | 10. | Modine T, Azzaoui R, Fayad G, et al. A recovery model of minimally invasive cardiopulmonary bypass in the rat. Perfusion, 2006, 21(2): 87-92. | 
				                                                        
				                                                            
				                                                                | 11. | Gourlay T, Ballaux PK, Draper ER, et al. Early experience with a new technique and technology designed for the study of pulsatile cardiopulmonary bypass in the rat. Perfusion, 2002, 17(3): 191-198. | 
				                                                        
				                                                            
				                                                                | 12. | Gao S, Gu T, Shi E, et al. Inhibition of long noncoding RNA growth arrest-specific 5 attenuates cerebral injury induced by deep hypothermic circulatory arrest in rats. J Thorac Cardiovasc Surg, 2019. | 
				                                                        
				                                                            
				                                                                | 13. | 楊波, 蘇肇伉, 陳惠文. 大鼠深低溫停循環模型的建立. 臨床兒科雜志, 2003, 6: 368-370. | 
				                                                        
				                                                            
				                                                                | 14. | 田鑫, 江基堯, 邱永明, 等. 大鼠深低溫停循環復蘇模型的建立. 中華神經外科雜志, 2004, 20(5): 417-420. | 
				                                                        
				                                                            
				                                                                | 15. | You XM, Nasrallah F, Darling E, et al. Rat cardiopulmonary bypass model: Application of a miniature extracorporeal circuit composed of asanguinous prime. J Extra Corpor Technol, 2005, 37(1): 60-65. | 
				                                                        
				                                                            
				                                                                | 16. | Shen L, Wang J, Liu K, et al. Hydrogen-rich saline is cerebroprotective in a rat model of deep hypothermic circulatory arrest. Neurochem Res, 2011, 36(8): 1501-1511. | 
				                                                        
				                                                            
				                                                                | 17. | Gu Q, Gu H, Lu X, et al. The influence of deep hypothermic global brain ischemia on EEG in a new rat model. J Card Surg, 2012, 27(5): 612-617. | 
				                                                        
				                                                            
				                                                                | 18. | 朱賢, 陸龍, 趙向東, 等. 不同溫度大鼠無血預充深低溫停循環模型的建立. 中國體外循環雜志, 2013, 11(2): 107-110, 115. | 
				                                                        
				                                                            
				                                                                | 19. | Bartels K, Ma Q, Venkatraman TN, et al. Effects of deep hypothermic circulatory arrest on the blood brain barrier in a cardiopulmonary bypass model—A pilot study. Heart Lung Circ, 2014, 23(10): 981-984. | 
				                                                        
				                                                            
				                                                                | 20. | 李斌, 朱耀斌, 劉愛軍, 等. 大鼠深低溫停循環模型的建立. 中華實用診斷與治療雜志, 2015, 29(7): 634-636. | 
				                                                        
				                                                            
				                                                                | 21. | 酈安琪, 徐嗣衛, 陳文超, 等. 40分鐘深低溫停循環大鼠長期存活模型的建立. 中華急診醫學雜志, 2019, 28(4): 484-488. | 
				                                                        
				                                                            
				                                                                | 22. | 張帥, 劉楊, 蔣璇, 等. 新型無血預充體外循環深低溫停循環模型. 中國心血管病研究, 2020, 18(7): 647-651. | 
				                                                        
				                                                            
				                                                                | 23. | 王立烽, 韋冬冬, 朱賢, 等. 閉式少預充量大鼠深低溫停循環模型的建立. 浙江醫學, 2020, 42(8): 770-774. | 
				                                                        
				                                                            
				                                                                | 24. | 馬曉潔, 羅璇, 張莉, 等. 延長創傷環境中暴露時間對雌雄大鼠行為差異及HPT軸的影響. 中華行為醫學與腦科學雜志, 2020, 29(7): 584-588. | 
				                                                        
				                                                            
				                                                                | 25. | Ballaux PK, Gourlay T, Ratnatunga CP, et al. A literature review of cardiopulmonary bypass models for rats. Perfusion, 1999, 14(6): 411-417. | 
				                                                        
				                                                            
				                                                                | 26. | Ordodi VL, Paunescu V, Ionac M, et al. Artificial device for extracorporeal blood oxygenation in rats. Artif Organs, 2008, 32(1): 66-70. | 
				                                                        
				                                                            
				                                                                | 27. | Wang Y, Gu T, Shi E, et al. Inhibition of microRNA-29c protects the brain in a rat model of prolonged hypothermic circulatory arrest. J Thorac Cardiovasc Surg, 2015, 150(3): 675-684. | 
				                                                        
				                                                            
				                                                                | 28. | Li YA, Liu ZG, Zhang YP, et al. Differential expression profiles of circular RNAs in the rat hippocampus after deep hypothermic circulatory arrest. Artif Organs, 2021, 45(8): 866-880. | 
				                                                        
				                                                            
				                                                                | 29. | Chen Q, Lei YQ, Liu JF, et al. Triptolide improves neurobehavioral functions, inflammation, and oxidative stress in rats under deep hypothermic circulatory arrest. Aging (Albany NY), 2021, 13(2): 3031-3044. | 
				                                                        
				                                                            
				                                                                | 30. | Chen Q, Sun KP, Huang JS, et al. Resveratrol attenuates neuroinflammation after deep hypothermia with circulatory arrest in rats. Brain Res Bull, 2020, 155: 145-154. | 
				                                                        
				                                                            
				                                                                | 31. | Jenke A, Yazdanyar M, Miyahara S, et al. AdipoRon attenuates inflammation and impairment of cardiac function associated with cardiopulmonary bypass-induced systemic inflammatory response syndrome. J Am Heart Assoc, 2021, 10(6): e018097. | 
				                                                        
				                                                            
				                                                                | 32. | Shi J, Jiang X, Gao S, et al. Gene-modified exosomes protect the brain against prolonged deep hypothermic circulatory arrest. Ann Thorac Surg, 2021, 111(2): 576-585. | 
				                                                        
				                                                            
				                                                                | 33. | Liu M, Li Y, Gao S, et al. A novel target to reduce microglial inflammation and neuronal damage after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg, 2020, 159(6): 2431-2444. | 
				                                                        
				                                                            
				                                                                | 34. | Li Y, Liu M, Gao S, et al. Cold-inducible RNA-binding protein maintains intestinal barrier during deep hypothermic circulatory arrest. Interact Cardiovasc Thorac Surg, 2019, 29(4): 583-591. | 
				                                                        
				                                                            
				                                                                | 35. | Weber C, Jenke A, Chobanova V, et al. Targeting of cell-free DNA by DNaseⅠ diminishes endothelial dysfunction and inflammation in a rat model of cardiopulmonary bypass. Sci Rep, 2019, 9(1): 19249. | 
				                                                        
				                                                            
				                                                                | 36. | Jiang X, Gu T, Liu Y, et al. Protection of the rat brain from hypothermic circulatory arrest injury by a chipmunk protein. J Thorac Cardiovasc Surg, 2018, 156(2): 525-536. |