| 1. |
錢桂生. 肺癌不同病理類型發病率的變化情況及其原因. 中華肺部疾病雜志(電子版), 2011, 4(1): 1-6.
|
| 2. |
蕭毅, 劉士遠. 肺結節影像人工智能技術現狀與思考. 腫瘤影像學, 2018, 27(4): 249-252.
|
| 3. |
張遜. 人工智能輔助肺癌診療一體化解決方案的臨床實踐與展望. 中國胸心血管外科臨床雜志, 2019, 26(12): 1167-1170.
|
| 4. |
Ciompi F, Chung K, van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep, 2017, 7: 468-479.
|
| 5. |
李欣菱, 王穎. 人工智能在肺結節檢測與診斷中的應用及發展. 新發傳染病電子雜志, 2019, 4(3): 185-189.
|
| 6. |
Mohamed Hoesein FA, de Jong PA, Mets OM. Optimizing lung cancer screening: Nodule size, volume doubling time, morphology and evaluation of other diseases. Ann Transl Med, 2015, 3(2): 19.
|
| 7. |
Usuda K, Saito Y, Sagawa M, et al. Tumor doubling time and prognostic assessment of patients with primary lung cancer. Cancer, 1994, 74(8): 2239-2244.
|
| 8. |
宋偉, 金征宇, 嚴洪珍, 等. 初步評估 16 層螺旋 CT 的 Lung Care 軟件在肺結節研究中的輔助價值. 中華放射學雜志, 2005, 39(1): 11-16.
|
| 9. |
王華斌, 李蘇建, 盧光明. 多層螺旋 CT 評估孤立性肺結節的臨床研究進展. 放射學實踐, 2010, 25(1): 105-108.
|
| 10. |
Oda S, Awai K, Murao K, et al. Volume-doubling time of pulmonary nodules with ground glass opacity at multidetector CT: Assessment with computer-aided three-dimensional volumetry. Acad Radiol, 2011, 18(1): 63-69.
|
| 11. |
Walter JE, Heuvelmans MA, Ten Haaf K, et al. Persisting new nodules in incidence rounds of the NELSON CT lung cancer screening study. Thorax, 2019, 74(3): 247-253.
|
| 12. |
裘楊波, 毛鋒, 張輝, 等. 早期肺癌進展趨勢的影響因素和 CT 研判. 中國肺癌雜志, 2018, 21(10): 793-799.
|
| 13. |
Zhang YP, Heuvelmans MA, Zhang H, et al. Changes in quantitative CT image features of ground-glass nodules in differentiating invasive pulmonary adenocarcinoma from benign and in situ lesions: histopathological comparisons. Clin Radiol, 2018, 73(5): 504.
|
| 14. |
Son JY, Lee HY, Kim JH, et al. Quantitative CT analysis of pulmonary ground-glass opacity nodules for distinguishing invasive adenocarcinoma from non-invasive or minimally invasive adenocarcinoma: the added value of using iodine mapping. Eur Radiol, 2016, 26(1): 43-54.
|