| 1. |
Bruggemans EF. Cognitive dysfunction after cardiac surgery:pathophysiological mechanisms and preventive strategies. Neth Heart J, 2013, 21(2):70-73.
|
| 2. |
van Harten AE, Scheeren TW, Absalom AR. A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia, 2012, 67(3):280-293.
|
| 3. |
王海濱, 于布為. 術后認知功能障礙的研究進展. 麻醉與監護論壇, 2011, 18(6):429-430.
|
| 4. |
Evered L, Scott D A, Silbert B, et al. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth Analg, 2011, 112(5):1179-1185.
|
| 5. |
Coburn M, Fahlenkamp A, Zoremba N, et al. Postoperative cognitive dysfunction:Incidence and prophylaxis. J Anaesthesist, 2010, 59(2):177-185.
|
| 6. |
Bartels K, Mcdonagh DL, Newman MF, et al. Neurocognitive outcomes after cardiac surgeryJ. Curr Opin Anaesthesiol, 2013, 26(1):91-97.
|
| 7. |
Tarakji KG, Sabik JR, Bhudia SK, et al. Temporal onset, risk factors, and outcomes associated with stroke after coronary artery bypass grafting. JAMA, 2011, 305(4):381-390.
|
| 8. |
樓松, 丁凡, 龍村, 等. 影響嬰兒心臟手術后近期預后的危險因素分析. 中國胸心血管外科臨床雜志, 2011, 18(3):222-226.
|
| 9. |
Selnes OA, Gottesman RF, Grega MA, et al. Cognitive and neurologic outcomes after coronary-artery bypass surgery. N Engl J Med, 2012, 366(3):250-257.
|
| 10. |
Sun X, Lindsay J, Monsein LH, et al. Silent brain injury after cardiac surgery:a review:cognitive dysfunction and magnetic resonance imaging diffusion-weighted imaging findings. J Am Coll Cardiol, 2012, 60(9):791-797.
|
| 11. |
Heringlake M, Garbers C, Kabler JH, et al. Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology, 2011, 114(1):58-69.
|
| 12. |
Lyman M, Lloyd DG, Ji X, et al. Neuroinflammation:The role and consequences. Neurosci Res, 2014, 79:1-12.
|
| 13. |
侯曉彬, 肖明第. 全身炎癥反應綜合征與體外循環. 中國體外循環雜志, 2004, 2(2):119-121.
|
| 14. |
Widmann CN, Heneka MT. Long-term cerebral consequences of sepsis. Lancet Neurol, 2014, 13(6):630-636.
|
| 15. |
Vacas S, Degos V, Feng X, et al. The neuroinflammatory response of postoperative cognitive decline. Br Med Bull, 2013, 106:161-178.
|
| 16. |
Barrientos RM, Hein AM, Frank MG, et al. Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J Neurosci, 2012, 32(42):14641-14648.
|
| 17. |
Cibelli M, Fidalgo AR, Terrando N, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol, 2010, 68(3):360-368.
|
| 18. |
Hudetz JA, Gandhi SD, Iqbal Z, et al. Elevated postoperative inflammatory biomarkers are associated with short-and mediumterm cognitive dysfunction after coronary artery surgery. J Anesth, 2011, 25(1):1-9.
|
| 19. |
Porhomayon J, Kolesnikov S, Nader ND. The Impact of stress hormones on post-traumatic stress disorders symptoms and memory in cardiac surgery patients. J Cardiovasc Thorac Res, 2014, 6(2):79-84.
|
| 20. |
Lupien SJ, Maheu F, Tu M, et al. The effects of stress and stress hormones on human cognition:Implications for the field of brain and cognition. Brain Cogn, 2007, 65(3):209-237.
|
| 21. |
Fang Q, Qian X, An J, et al. Higher dose dexamethasone increases early postoperative cognitive dysfunction. J Neurosurg Anesthesiol, 2014, 26(3):220-225.
|
| 22. |
Mu DL, Li LH, Wang DX, et al. High postoperative serum cortisol level is associated with increased risk of cognitive dysfunction early after coronary artery bypass graft surgery:a prospective cohort study. PLoS One, 2013, 8(10):e77637.
|
| 23. |
Jespersen SN, Ostergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab, 2012, 32(2):264-277.
|
| 24. |
Newman MF, Kramer D, Croughwell ND, et al. Differential age effects of mean arterial pressure and rewarming on cognitive dysfunction after cardiac surgery. Anesth Analg, 1995, 81(2):236-242.
|
| 25. |
Kadoi Y, Saito S, Fujita N, et al. Effects of balloon-induced pulsatile perfusion on postoperative short-and long-term cognitive dysfunction in diabetic patients with impaired cerebrovascular carbon dioxide reactivity. J Cardiothorac Vasc Anesth, 2013, 27(2):238-244.
|
| 26. |
Ono M, Brady K, Easley RB, et al. Duration and magnitude of blood pressure below cerebral autoregulation threshold during cardiopulmonary bypass is associated with major morbidity and operative mortality. J Thorac Cardiovasc Surg, 2014, 147(1):483-489.
|
| 27. |
de la Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol, 2012, 2012:367516.
|
| 28. |
Joshi B, Brady K, Lee J, et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesth Analg, 2010, 110(2):321-328.
|
| 29. |
Nathan HJ, Rodriguez R, Wozny D, et al. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass:five-year follow-up of a randomized trial. J Thorac Cardiovasc Surg, 2007, 133(5):1206-1211.
|
| 30. |
Sniecinski RM, Chandler WL. Activation of the hemostatic system during cardiopulmonary bypass. Anesth Analg, 2011, 113(6):1319-1333.
|
| 31. |
Yavari M, Becker RC. Coagulation and fibrinolytic protein kinetics in cardiopulmonary bypass. J Thromb Thrombolysis, 2009, 27(1):95-104.
|
| 32. |
Hayakawa M, Sawamura A, Gando S, et al. Disseminated intravascular coagulation at an early phase of trauma is associated with consumption coagulopathy and excessive fibrinolysis both by plasmin and neutrophil elastase. Surgery, 2011, 149(2):221-230.
|
| 33. |
翁渝國. 微創心臟外科的進展. 中國胸心血管外科臨床雜志,2005, 12(4):232-233.
|
| 34. |
Goldstone AB, Atluri P, Szeto WY, et al. Minimally invasive approach provides at least equivalent results for surgical correction of mitral regurgitation:a propensity-matched comparison. J Thorac Cardio vasc Surg, 2013, 145(3):748-756.
|
| 35. |
Mcclure RS, Athanasopoulos LV, Mcgurk S, et al. One thousand minimally invasive mitral valve operations:early outcomes, late outcomes, and echocardiographic follow-up. J Thorac Cardiovasc Surg, 2013, 145(5):1199-1206.
|
| 36. |
Borgermann J, Jategaonkar S, Haas N, et al. Hybrid operation theatre from the point of view of cardiac surgery. The future for the heart team. Chirurg, 2013, 84(12):1022-1029.
|
| 37. |
Riedel B, Browne K, Silbert B. Cerebral protection:inflammation, endothelial dysfunction, and postoperative cognitive dysfunction. Curr Opin Anaesthesiol, 2014, 27(1):89-97.
|
| 38. |
Song J, Park J, Kim J Y, et al. Effect of ulinastatin on perioperative organ function and systemic inflammatory reaction during cardiac surgery:a randomized double-blinded study. Korean J Anesthesiol, 2013, 64(4):334-340.
|
| 39. |
周燕萍, 史珍英,蔡及明,等. 烏司他丁對法洛四聯癥患者圍術期肝、腎功能的保護作用. 中國胸心血管外科臨床雜志, 2008, 15(1):21-25.
|
| 40. |
石佳,楊玲,呂紅,等. 烏司他丁對體外循環心臟圍術期患者 NE、WBC、SIRS評分的影響. 山東醫藥, 2012, 52(17):65-67.
|
| 41. |
Cappabianca G, Rotunno C, de Luca TSL, et al. Protective effects of steroids in cardiac surgery:a meta-analysis of randomized doubleblind trials. J Cardiothorac Vasc Anesth, 2011, 25(1):156-165.
|
| 42. |
Scrascia G, Rotunno C, Guida P, et al. Perioperative steroids administration in pediatric cardiac surgery:a meta-analysis of randomized controlled trials. Pediatr Crit Care Med, 2014, 15(5):435-442.
|
| 43. |
Heying R, Wehage E, Schumacher K, et al. Dexamethasone pretreatment provides antiinflammatory and myocardial protection in neonatal arterial switch operation. Ann Thorac Surg, 2012, 93(3):869-876.
|
| 44. |
Slater JP, Guarino T, Stack J, et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg, 2009, 87(1):36-45.
|
| 45. |
Bouzat P, Sala N, Payen JF, et al. Beyond intracranial pressure:optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann Intensive Care, 2013, 3(1):23.
|
| 46. |
Biancari F, Rimpilainen R. Meta-analysis of randomised trials comparing the effectiveness of miniaturised versus conventional cardiopulmonary bypass in adult cardiac surgery. Heart, 2009, 95(12):964-969.
|
| 47. |
Eisses MJ, Velan T, Aldea GS, et al. Strategies to reduce hemostatic activation during cardiopulmonary bypass. Thromb Res, 2006, 117(6):689-703.
|
| 48. |
張振,王武軍,王振康. 法洛四聯癥患者圍手術期凝血功能變化及意義. 中國胸心血管外科臨床雜志, 2009, 16(3):244-245.
|