1. |
Aoun M, Chalhoub R, Nham FH, et al. Evolution and hotspots in bilateral total joint arthroplasty research: a bibliometric analysis. Clin Orthop Surg, 2024, 16(6): 880-889.
|
2. |
Victor A, van de Graaf, Gavin W, et al. Functional alignment minimizes changes to joint line obliquity in robotic-assisted total knee arthroplasty: a CT analysis of functional versus kinematic alignment in 2, 116 knees using the Coronal Plane Alignment of the Knee (CPAK) classification. Bone Jt Open, 2024, 5(12): 1081-1091.
|
3. |
Theil C, Schwarze J, Gosheger G, et al. Good to excellent long-term survival of a single-design condylar constrained knee arthroplasty for primary and revision surgery. Knee Surg Sports Traumatol Arthrosc, 2022, 30(9): 3184-3190.
|
4. |
Athwal KK, Willinger L, Manning W, et al. A constrained-condylar fixed-bearing total knee arthroplasty is stabilised by the medial soft tissues. Knee Surg Sports Traumatol Arthrosc, 2021, 29(2): 659-667.
|
5. |
樸俊杰, 張一波, 陳曉偉, 等. 人工全膝關節置換術中聯合股骨外髁滑移截骨術矯正股骨外弓畸形的療效分析. 中國修復重建外科雜志, 2022, 36(2): 183-188.
|
6. |
Mou P, Zeng Y, Yang J, et al. The Effectiveness of medial femoral epicondyle up-sliding osteotomy to correct severe valgus deformity in primary total knee arthroplasty. J Arthroplasty, 2018, 33(9): 2868-2874.
|
7. |
Mou P, Zeng Y, Pei F, et al. Medial femoral epicondyle upsliding osteotomy with posterior stabilized arthroplasty provided good clinical outcomes such as constrained arthroplasty in primary total knee arthroplasty with severe valgus deformity. Knee Surg Sports Traumatol Arthrosc, 2019, 27(7): 2266-2275.
|
8. |
卿忠, 郝林杰, 李輝, 等. 股骨內髁滑移截骨技術在全膝關節置換術治療RanawatⅡ型膝外翻畸形中的應用及療效分析. 中國骨與關節損傷雜志, 2024, 39(2): 144-148.
|
9. |
王輝. 膝關節內側副韌帶的應用解剖. 中國組織工程研究與臨床康復, 2008, 12(28): 5545-5548.
|
10. |
Pathak C, Chattaraj A, Hazra S, et al. A simple surgical technique for correction of varus deformity in advanced osteoarthritis of knees by medial femoral condylar sliding osteotomy-description of procedure and short term outcome—a prospective study. Indian J Orthop, 2024, 58(8): 1079-1091.
|
11. |
戴章生, 林曉聰, 方凱彬, 等. 外側副韌帶松弛的內翻膝患者在TKA術中的脛骨截骨量分析. 中國臨床解剖學雜志, 2021, 39(4): 460-464.
|
12. |
Bellemans J. Multiple needle puncturing: balancing the varus knee. Orthopedics, 2011, 34(9): e510-e512.
|
13. |
Rossi R, Rosso F, Cottino U, et al. Total knee arthroplasty in the valgus knee. Int Orthop, 2014, 38(2): 273-283.
|
14. |
Mullaji AB, Shetty GM. Surgical technique: Computer-assisted sliding medial condylar osteotomy to achieve gap balance in varus knees during TKA. Clin Orthop Relat Res, 2013, 471(5): 1484-1491.
|
15. |
Conjeski JM, Scuderi GR. Lateral femoral epicondylar osteotomy for correction of fixed valgus deformity in total knee arthroplasty: a technical note. J Arthroplasty, 2018, 33(2): 386-390.
|
16. |
Bellemans J, Vandenneucker H, Vanlauwe J, et al. The influence of coronal plane deformity on mediolateral ligament status: an observational study in varus knees. Knee Surg Sports Traumatol Arthrosc, 2010, 18(2): 152-156.
|
17. |
Siddiqi A, Smith T, McPhilemy JJ, et al. Soft-tissue balancing technology for total knee arthroplasty. JBJS Rev, 2020, 8(1): e0050. doi: 10.2106/JBJS.RVW.19.00050.
|
18. |
Mirzatolooei F, Tabrizi A, Taleb H, et al. Primary results of medial epicondylar osteotomy in patients with severe bilateral varus knee candidate for total knee replacement. J Knee Surg, 2021, 34(2): 142-146.
|
19. |
Krzysztof K, Trams E, Pomianowski S, et al. Osteotomies and total knee arthroplasty: systematic review and meta-analysis. Life (Basel), 2022, 12(8): 1120. doi: 10.3390/life12081120.
|
20. |
Li F, Liu N, Li Z, et al. Lateral femoral sliding osteotomy in total knee arthroplasty with valgus deformity greater than twenty degrees. Int Orthop, 2019, 43(11): 2511-2517.
|
21. |
Palanisami D, Dhanasekaran S, Kanugula SK, et al. Outcomes of lateral femoral sliding osteotomy in primary total knee arthroplasty for type two fixed valgus deformity. Int Orthop, 2024, 48(1): 111-117.
|
22. |
Dong Y, Zhang Z, Dong W, et al. An optimization method for implantation parameters of individualized TKA tibial prosthesis based on finite element analysis and orthogonal experimental design. BMC Musculoskelet Disord, 2020, 21(1): 165. doi: 10.1186/s12891-020-3189-5.
|