1. |
宋達疆, 李贊, 章一新, 等. 胸背血管前鋸肌支在胸壁缺損修復中的應用. 中國修復重建外科雜志, 2022, 36(8): 1021-1025.
|
2. |
李艾元, 施心雨, 岳萬福. 絲素支架在肌肉骨骼組織工程的應用及研究進展. 絲綢, 2021, 58(11): 18-22.
|
3. |
Zhe M, Wu X, Yu P, et al. Recent advances in decellularized extracellular matrix-based bioinks for 3D gioprinting in tissue engineering. Materials (Basel, Switzerland), 2023, 16(8): 3197.
|
4. |
Philips C, Terrie L, Thorrez L. Decellularized skeletal muscle: A versatile biomaterial in tissue engineering and regenerative medicine. Biomaterials, 2022, 283: 121436.
|
5. |
鄧斌斌, 鄧雪強, 劉帥剛, 等. 關節鏡下肱二頭肌長頭肌腱轉位治療不可修復巨大肩袖撕裂的研究進展. 中國修復重建外科雜志, 2022, 36(2): 249-253.
|
6. |
李艾元, 施心雨, 劉夢斐, 等. 基于絲素蛋白的可注射水凝膠在肌肉再生工程的應用. 絲綢, 2023, 60(2): 42-48.
|
7. |
Davoudi S, Chin CY, Cooke MJ, et al. Muscle stem cell intramuscular delivery within hyaluronan methylcellulose improves engraftment efficiency and dispersion. Biomaterials, 2018, 173: 34-46.
|
8. |
Abaci A, Guvendiren M. Designing decellularized extracellular matrix-based bioinks for 3D bioprinting. Advanced healthcare materials, 2020, 9(24): e2000734.
|
9. |
Wang YH, Wang DR, Guo YC, et al. The application of bone marrow mesenchymal stem cells and biomaterials in skeletal muscle regeneration. Regenerative therapy, 2020, 15: 285-294.
|
10. |
Alarcin E, Bal-?ztürk A, Avci H, et al. Current strategies for the regeneration of skeletal muscle tissue. Int J Mol Sci, 2021, 22(11): 5929.
|
11. |
Qazi TH, Mooney DJ, Pumberger M, et al. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials, 2015, 53: 502-521.
|
12. |
Hosoyama K, Ahumada M, Goel K, et al. Electroconductive materials as biomimetic platforms for tissue regeneration. Biotechnology advances, 2019, 37(3): 444-458.
|
13. |
Mostafavi E, Medina-Cruz D, Kalantari K, et al. Electroconductive nanobiomaterials for tissue engineering and regenerative medicine. Bioelectricity, 2020, 2(2): 120-149.
|
14. |
Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells, 2020, 9(9): 1970.
|
15. |
Smith LR, Kok HJ, Zhang B, et al. Matrix metalloproteinase 13 from satellite cells is required for efficient muscle growth and regeneration. Cell Physiol Biochem, 2020, 54(3): 333-353.
|
16. |
Nuge T, Liu Z, Liu X, et al. Recent advances in scaffolding from natural-based polymers for volumetric muscle injury. Molecules (Basel, Switzerland), 2021, 26(3): 699.
|
17. |
Langridge B, Griffin M, Butler PE. Regenerative medicine for skeletal muscle loss: a review of current tissue engineering approaches. J Mater Scie Mater Med, 2021, 32(1): 15.
|
18. |
Carnes ME, Pins GD. Skeletal muscle tissue engineering: Biomaterials-based strategies for the treatment of volumetric muscle loss. Bioengineering (Basel, Switzerland), 2020, 7(3): 85.
|
19. |
李丹丹, 莫秀梅. 基于席夫堿反應的氧化葡聚糖/胺化羧甲基殼聚糖雙組分水凝膠粘合劑. 中國組織工程研究, 2018, 22(22): 6.
|
20. |
Xu Y, Wang Z, Hua Y, et al. Photocrosslinked natural hydrogel composed of hyaluronic acid and gelatin enhances cartilage regeneration of decellularized trachea matrix. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111628.
|
21. |
Yu T, Hu Y, He W, et al. An injectable and self-healing hydrogel with dual physical crosslinking for in-situ bone formation. Mat Today Bio, 2023, 19: 100558.
|
22. |
Urciuolo A, Urbani L, Perin S, et al. Decellularised skeletal muscles allow functional muscle regeneration by promoting host cell migration. Scientific reports, 2018, 8(1): 8398.
|
23. |
李昱輝, 黃國友, 徐峰, 等. 基于水凝膠的細胞力學微環境構建及在肌肉組織再生中的應用. 十二屆全國生物力學學術會議暨第十四屆全國生物流變學學術會議會議論文摘要匯編, 2018.
|