| 1. |
王子瑞, 朱金亮, 何志敏, 等. 人工合成骨修復材料的臨床應用及展望. 生物骨科材料與臨床研究, 2021, 18(4): 8-17.
|
| 2. |
Bohner M, Santoni BLG, D?belin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater, 2020, 113: 23-41.
|
| 3. |
Chappard D. Beta-tricalcium phosphate and bone surgery: Editorial. Morphologie, 2017, 101(334): 111-112.
|
| 4. |
Lin J, Xu D, Liu Z, et al. Physicochemical and biological properties of carboxymethyl chitosan zinc (CMCS-Zn)/α-calcium sulfate hemihydrate (α-CSH) composites. Mater Sci Eng C Mater Biol Appl, 2021, 131: 112496. doi: 10.1016/j.msec.2021.112496.
|
| 5. |
Ren M, Wang X, Hu M, et al. Enhanced bone formation in rat critical-size tibia defect by a novel quercetin-containing alpha-calcium sulphate hemihydrate/nano-hydroxyapatite composite. Biomed Pharmacother, 2022, 146: 112570. doi: 10.1016/j.biopha.2021.112570..
|
| 6. |
Khairoun I, Driessens FC, Boltong MG, et al. Addition of cohesion promotors to calcium phosphate cements. Biomaterials, 1999, 20(4): 393-398.
|
| 7. |
USP ⅩⅫ-NF ⅩⅦ. Toxicity classification in US Pharmacopeia. Rockville: United States harmacopeial Convention Inc., 1990: 2069.
|
| 8. |
Wei S, Ma JX, Xu L, et al. Biodegradable materials for bone defect repair. Mil Med Res, 2020, 7(1): 54. doi: 10.1186/s40779-020-00280-6.
|
| 9. |
Xue N, Ding XF, Huang RZ, et al. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals (Basel), 2022, 15(7): 879. doi: 10.3390/ph15070879.
|
| 10. |
魏晨旭, 何怡文, 王聃, 等. 組織工程學中骨修復材料的研究熱點與進展. 中國組織工程研究, 2020, 24(10): 1615-1621.
|
| 11. |
徐睿. 硫酸鈣基骨修復材料的性能改進與研究. 太原: 太原理工大學, 2020.
|
| 12. |
Miao M, Xin F, Wang G, et al. Direct transformation of FGD gypsum to calcium sulfate hemihydrate whiskers: Preparation, simulations, and process analysis. Particuology, 2015, 19(4): 53-59.
|
| 13. |
Mao K, Cui F, Li J, et al. Preparation of combined β-TCP/α-CSH artificial bone graft and its performance in a spinal fusion model. J Biomater Appl, 2012, 27(1): 37-45.
|
| 14. |
李鵬, 毛克亞, 江濤, 等. β-磷酸三鈣/α-半水硫酸鈣復合人工骨體外降解速度可與成骨一致. 中國組織工程研究與臨床康復, 2011, 15(51): 9501-9504.
|
| 15. |
杜明奎, 毛克亞, 王繼芳. β-磷酸三鈣與α-半水硫酸鈣降解研究進展. 國際骨科學雜志, 2008, 29(1): 6-7, 25.
|
| 16. |
Tao SC, Li XR, Wei WJ, et al. Polymeric coating on β-TCP scaffolds provides immobilization of small extracellular vesicles with surface-functionalization and ZEB1-Loading for bone defect repair in diabetes mellitus. Biomaterials, 2022, 283: 121465. doi: 10.1016/j.biomaterials.2022.121465.
|
| 17. |
桑宏勛, 王臻, 郭征, 等. 多孔TCP人工骨修復腫瘤性骨缺損的臨床效果與骨愈合機制探討. 中國修復重建外科雜志, 2008, 22(4): 463-467.
|
| 18. |
Petta D, Fussell G, Hughes L, et al. Calcium phosphate/thermoresponsive hyaluronan hydrogel composite delivering hydrophilic and hydrophobic drugs. J Orthop Translat, 2015, 5: 57-68.
|
| 19. |
Qiu Y, Ma Y, Huang Y, et al. Current advances in the biosynthesis of hyaluronic acid with variable molecular weights. Carbohydr Polym, 2021, 269: 118320. doi: 10.1016/j.carbpol.2021.118320.
|
| 20. |
Pereira H, Sousa DA, Cunha A, et al. Hyaluronic Acid. Adv Exp Med Biol, 2018, 1059: 137-153.
|
| 21. |
梁茂華. β-TCP/α-CSH復合人工骨的制備及在脊柱融合模型中的應用. 北京: 中國人民解放軍軍醫進修學院, 2008.
|
| 22. |
Wei Y, Chang YH, Liu CJ, et al. Integrated oxidized-hyaluronic acid/collagen hydrogel with β-TCP using proanthocyanidins as a crosslinker for drug delivery. Pharmaceutics, 2018, 10(2): 37. doi: 10.3390/pharmaceutics10020037.
|
| 23. |
馮琦. 明膠/透明質酸微凝膠組裝體的構建及其在關節軟骨再生修復中的應用研究. 廣州: 華南理工大學, 2021.
|
| 24. |
葉海民, 丁凌華, 孔維豪, 等. 多級微管結構骨支架載體促進成骨成血管作用及機制. 中國組織工程研究, 2021, 25(4): 621-625.
|
| 25. |
Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials (Basel), 2010, 3(7): 3867-3910.
|
| 26. |
張鐘毓, 許燕, 張旭婧, 等. 同軸骨組織工程支架降解特性研究. 機械設計與制造, 2021, (2): 5-9.
|