| 1. |
Hao Z, Li H, Wang Y, et al. Supramolecular peptide nanofiber hydrogels for bone tissue engineering: From multihierarchical fabrications to comprehensive applications. Adv Sci (Weinh), 2022: e2103820. doi: 10.1002/advs.202103820.
|
| 2. |
秦宇星, 任前貴, 沈佩鋒, 等. 組織工程技術治療骨缺損: 應用于臨床還有多遠? 中國組織工程研究, 2021, 25(29): 4703-4708.
|
| 3. |
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater, 2017, 2(4): 224-247.
|
| 4. |
Lopes SV, Collins MN, Reis RL, et al. Vascularization approaches in tissue engineering: Recent developments on evaluation tests and modulation. ACS Appl Bio Mater, 2021, 4(4): 2941-2956.
|
| 5. |
Sandhurst ES, Jaswandkar SV, Kundu K, et al. Nanoarchitectonics of a microsphere-based scaffold for modeling neurodevelopment and neurological disease. ACS Appl Bio Mater, 2022, 5(2): 528-544.
|
| 6. |
Peng J, Chen L, Peng K, et al. Bone marrow mesenchymal stem cells and endothelial progenitor cells co-culture enhances large segment bone defect repair. J Biomed Nanotechnol, 2019, 15(4): 742-755.
|
| 7. |
Shafiee S, Shariatzadeh S, Zafari A, et al. Recent advances on cell-based co-culture strategies for prevascularization in tissue engineering. Front Bioeng Biotechnol, 2021, 9: 745314. doi: 10.3389/fbioe.2021.745314.
|
| 8. |
魯亞杰, 李明輝, 龍作堯, 等. 基于血管灌注及硬組織切片技術的骨微血管研究方法. 解剖學雜志, 2019, 42(1): 85-87.
|
| 9. |
魯亞杰, 李明輝, 龍作堯, 等. 骨組織內微血管可視化研究模型的建立. 中華實驗外科雜志, 2018, 35(12): 2336-2338.
|
| 10. |
Chen X, He W, Sun M, et al. STING inhibition accelerates the bone healing process while enhancing type H vessel formation. FASEB J, 2021, 35(11): e21964. doi: 10.1096/fj.202100069RR.
|
| 11. |
Qin Y, Zhang C. Endothelial progenitor cell-derived extracellular vesicle-meditated cell-to-cell communication regulates the proliferation and osteoblastic differentiation of bone mesenchymal stromal cells. Mol Med Rep, 2017, 16(5): 7018-7024.
|
| 12. |
Gurel Pekozer G, Torun Kose G, Hasirci V. Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells. Microvasc Res, 2016, 108: 1-9.
|
| 13. |
賈智明, 郭海林, 陳方. 組織工程組織血管化的研究進展. 組織工程與重建外科雜志, 2018, 14(1): 39-42.
|
| 14. |
Lin Z, Zhang X, Fritch MR, et al. Engineering pre-vascularized bone-like tissue from human mesenchymal stem cells through simulating endochondral ossification. Biomaterials, 2022, 283: 121451. doi: 10.1016/j.biomaterials.2022.121451.
|
| 15. |
Yong KW, Choi JR, Choi JY, et al. Recent advances in mechanically loaded human mesenchymal stem cells for bone tissue engineering. Int J Mol Sci, 2020, 21(16): 5816. doi: 10.3390/ijms21165816.
|
| 16. |
Kocherova I, Bryja A, Mozdziak P, et al. Human umbilical vein endothelial cells (HUVECs) co-culture with osteogenic cells: From molecular communication to engineering prevascularised bone grafts. J Clin Med, 2019, 8(10): 1602. doi: 10.3390/jcm8101602.
|
| 17. |
廖欣宇, 王福科, 李彥林, 等. 聯合培養血管內皮細胞和脂肪干細胞與部分脫蛋白生物骨構建組織工程骨修復頜骨缺損. 中國組織工程研究, 2022, 26(13): 2027-2033.
|
| 18. |
Kong L, Wang Y, Wang H, et al. Conditioned media from endothelial progenitor cells cultured in simulated microgravity promote angiogenesis and bone fracture healing. Stem Cell Res Ther, 2021, 12(1): 47. doi: 10.1186/s13287-020-02074-y.
|
| 19. |
Bouland C, Philippart P, Dequanter D, et al. Cross-talk between mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs) in bone regeneration. Front Cell Dev Biol, 2021, 9: 674084. doi: 10.3389/fcell.2021.674084.
|
| 20. |
Liang Y, Wen L, Shang F, et al. Endothelial progenitors enhanced the osteogenic capacities of mesenchymal stem cells in vitro and in a rat alveolar bone defect model. Arch Oral Biol, 2016, 68: 123-130.
|
| 21. |
Li G, Wang X, Cao J, et al. Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits. Br J Oral Maxillofac Surg, 2014, 52(2): 134-139.
|
| 22. |
Kawecki F, Galbraith T, Clafshenkel WP, et al. In vitro prevascularization of self-assembled human bone-like tissues and preclinical assessment using a rat calvarial bone defect model. Materials (Basel), 2021, 14(8): 2023. doi: 10.3390/ma14082023.
|
| 23. |
Li Z, Yang A, Yin X, et al. Mesenchymal stem cells promote endothelial progenitor cell migration, vascularization, and bone repair in tissue-engineered constructs via activating CXCR2-Src-PKL/Vav2-Rac1. FASEB J, 2018, 32(4): 2197-2211.
|
| 24. |
Tamari T, Kawar-Jaraisy R, Doppelt O, et al. The paracrine role of endothelial cells in bone formation via CXCR4/SDF-1 pathway. Cells, 2020, 9(6): 1325. doi: 10.3390/cells9061325.
|