| 1. |
Azi ML, Aprato A, Santi I, et al. Autologous bone graft in the treatment of post-traumatic bone defects: a systematic review and meta-analysis. BMC Musculoskelet Disord, 2016, 17(1): 465. doi: 10.1186/s12891-016-1312-4.
|
| 2. |
Winkler T, Sass FA, Duda GN, et al. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res, 2018, 7(3): 232-243.
|
| 3. |
Karalashvili L, Kakabadze A, Uhryn M, et al. Bone grafts for reconstruction of bone defects (review). Georgian Med News, 2018, (282): 44-49.
|
| 4. |
Hasan A, Byambaa B, Morshed M, et al. Advances in osteobiologic materials for bone substitutes. J Tissue Eng Regen Med, 2018, 12(6): 1448-1468.
|
| 5. |
Mansour A, Mezour MA, Badran Z, et al. Extracellular matrices for bone regeneration: A literature review. Tissue Eng Part A, 2017, 23(23-24): 1436-1451.
|
| 6. |
張保亮. 生物型異種骨生物相容性細胞學及免疫學研究. 廣州: 南方醫科大學, 2016.
|
| 7. |
Bracey DN, Jinnah AH, Willey JS, et al. Investigating the osteoinductive potential of a decellularized xenograft bone substitute. Cells Tissues Organs, 2019, 207(2): 97-113.
|
| 8. |
Cho H, Bucciarelli A, Kim W, et al. Natural sources and applications of demineralized bone matrix in the field of bone and cartilage tissue engineering//Chun HJ, Reis RL, Motta A, et al. Bioinspired biomaterials: Advances in tissue engineering and regenerative medicine. Singapore: Springer Singapore, 2020: 3-14.
|
| 9. |
Xu AT, Qi WT, Lin MN, et al. The optimization of sintering treatment on bovine-derived bone grafts for bone regeneration: in vitro and in vivo evaluation. J Biomed Mater Res B Appl Biomater, 2020, 108(1): 272-281.
|
| 10. |
周建偉, 周靜, 李矛, 等. 脫細胞脫鈣骨基質-促紅細胞生成素水凝膠促成骨和成血管的能力. 中國組織工程研究, 2021, 25(28): 4454-4459.
|
| 11. |
別曉梅, 馬學華, 閆樂媛, 等. BMP-2 與 TBC 復合的參數和骨誘導能力的動物活體內評價. 中國骨與關節損傷雜志, 2020, 35(11): 1153-1155.
|
| 12. |
徐麗明, 邵安良, 趙艷紅. 動物源性生物材料殘留 DNA 的定量檢測法. 生物醫學工程學雜志, 2012, 29(3): 479-485.
|
| 13. |
Brydone AS, Meek D, Maclaine S. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng H, 2010, 224(12): 1329-1343.
|
| 14. |
Koike C, Kannagi R, Takuma Y, et al. Introduction of α (1,2)-fucosyltransferase and its effect on a-Gal epitopes in transgenic pig. Xenotransplantation, 1996, 3(1): 81-86.
|
| 15. |
邵安良. 動物源性生物材料免疫原性檢測與評價技術研究. 北京: 中國人民解放軍醫學院, 2019.
|
| 16. |
Yamada K, Sachs DH, DerSimonian H. Direct and indirect recognition of pig class Ⅱ antigens by human T cells. Transplant Proc, 1995, 27(1): 258-259.
|
| 17. |
Chen G, Lv Y. Decellularized bone matrix scaffold for bone regeneration. Methods Mol Biol, 2018, 1577: 239-254.
|
| 18. |
Rana D, Zreiqat H, Benkirane-Jessel N, et al. Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med, 2017, 11(4): 942-965.
|
| 19. |
胡曉霞. 非晶磷酸鈣/磷灰石燒結體的組織結構及其力學和溶解行為. 濟南: 山東大學, 2014.
|
| 20. |
白玉龍, 趙彥濤, 沈亞俊, 等. 3種植骨材料在大鼠下頜骨骨缺損修復實驗中的長期效果觀察. 中國骨與關節損傷雜志, 2019, 34(6): 581-584.
|
| 21. |
李龍飛, 李志鵬, 劉潤恒, 等. 不同燒結溫度對豬骨羥基磷灰石理化性能的影響. 中華口腔醫學研究雜志 (電子版), 2017, 11(3): 164-168.
|
| 22. |
do Desterro Fde P, Sader MS, Soares GD, et al. Can inorganic bovine bone grafts present distinct properties? Braz Dent J, 2014, 25(4): 282-288.
|
| 23. |
Wang Z, Yuan L, Zuo X, et al. Variations in the sequences of BMP2 imply different mechanisms for the evolution of morphological diversity in vertebrates. Comp Biochem Physiol Part D Genomics Proteomics, 2009, 4(2): 100-104.
|
| 24. |
Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials, 2011, 32(12): 3233-3243.
|