| 1. |
Kozusko SD, Riccio C, Goulart M, et al. Chitosan as a bone scaffold biomaterial. J Craniofac Surg, 2018, 29(7): 1788-1793.
|
| 2. |
Ginebra MP, Espanol M, Maazouz Y, et al. Bioceramics and bone healing. EFORT Open Rev, 2018, 3(5): 173-183.
|
| 3. |
Fox K, Tran PA, Tran N. Recent advances in research applications of nanophase hydroxyapatite. Chemphyschem, 2012, 13(10): 2495-2506.
|
| 4. |
王麗萍. 微量氟、鋅、鍶摻雜羥基磷灰石晶體結構及生物學效應研究. 上海: 中國科學院大學(中國科學院上海硅酸鹽研究所), 2018.
|
| 5. |
Tamai N, Myoui A, Tomita T, et al. Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J Biomed Mater Res, 2002, 59(1): 110-117.
|
| 6. |
廖欣宇, 王福科, 王國梁. 骨組織工程支架的進展與挑戰. 中國組織工程研究, 2021, 25(28): 4553-4560.
|
| 7. |
毛克亞, 劉建恒, 崔翔. 骨組織工程材料在大段骨缺損修復中的應用進展. 武警醫學, 2020, 31(4): 277-280, 283.
|
| 8. |
Su Y, Cockerill I, Wang Y, et al. Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol, 2019, 37(4): 428-441.
|
| 9. |
Ferrone E, Araneo R, Notargiacomo A, et al. ZnO nanostructures and electrospun ZnO-polymeric hybrid nanomaterials in biomedical, health, and sustainability applications. Nanomaterials (Basel), 2019, 9(10): 1449. doi: 10.3390/nano9101449.
|
| 10. |
朱斌, 何遠懷, 孟增東, 等. 多孔 ZnO/羥基磷灰石生物復合材料的制備與性能. 復合材料學報, 2019, 36(11): 2637-2643.
|
| 11. |
張亞楠. ZnO/nHA 仿骨結構活性增強羥基磷灰石骨修復材料的構建及體外生物活性研究. 昆明: 昆明理工大學, 2020.
|
| 12. |
奚廷斐. 醫療器械生物學評價. 北京: 中國標準出版社, 2012: 87-170.
|
| 13. |
李燁. 具有促成骨活性的 PLGA/TCP/Mg 復合多孔支架修復骨缺損研究. 北京: 中國科學院大學, 2016.
|
| 14. |
Battafarano G, Rossi M, De Martino V, et al. Strategies for bone regeneration: from graft to tissue engineering. Int J Mol Sci, 2021, 22(3): 1128. doi: 10.3390/ijms22031128.
|
| 15. |
Yan Y, Chen H, Zhang H, et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials, 2019, 190-191: 97-110.
|
| 16. |
嚴霞. SPS 制備多孔 SrO/nHA 骨修復材料在非人靈長類動物體內的生物相容性及成骨活性研究. 昆明: 昆明理工大學, 2019.
|
| 17. |
Shen Y, Liu W, Wen C, et al. Bone regeneration: importance of local pH-strontium-doped borosilicate scaffold. J Mater Chem, 2012, 22(17): 8662-8670.
|
| 18. |
Seo HJ, Cho YE, Kim T, et al. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract, 2010, 4(5): 356-361.
|
| 19. |
Storrie H, Stupp SI. Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activity an biomineralization. Biomaterials, 2005, 26(27): 5492-5499.
|
| 20. |
Zhao C, Wu H, Hou P, et al. Enhanced corrosion resistance and antibacterial property of Zn doped DCPD coating on biodegradable Mg. Materials Letters, 2016, 180: 42-46.
|
| 21. |
Bakhsheshi-Rad HR, Hamzah E, Low HT, et al. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities. Mater Sci Eng C Mater Biol Appl, 2017, 73: 215-219.
|