| 1. |
Kochhal N, Thakur R, Gawande V. Incidence of anterior cruciate ligament injury in a rural tertiary care hospital. J Family Med Prim Care, 2019, 8(12): 4032-4035.
|
| 2. |
Weitz FK, Sillanp?? PJ, Mattila VM. The incidence of paediatric ACL injury is incred. asing in Finlan. Knee Surg Sports Traumatol Arthrosc, 2020, 28(2): 363-368.
|
| 3. |
Magnitskaya N, Mouton C, Gokeler A, et al. Younger age and hamstring tendon graft are associated with higher IKDC 2000 and KOOS scores during the first year after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2020, 28(3): 823-832.
|
| 4. |
Ouillette R, Edmonds E, Chambers H, et al. Outcomes of revision anterior cruciate ligament surgery in adolescents. Am J Sports Med, 2019, 47(6): 1346-1352.
|
| 5. |
Li Q, Zhang Y, Zhan L, et al. Correlation analysis of magnetic resonance imaging-based graft maturity and outcomes after anterior cruciate ligament reconstruction using International Knee Documentation Committee Score. Am J Phys Med Rehabil, 2019, 98(5): 387-391.
|
| 6. |
Weiler A, Peters G, M?urer J, et al. Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports Med, 2001, 29(6): 751-761.
|
| 7. |
Liu S, Li H, Tao H, et al. A randomized clinical trial to evaluate attached hamstring anterior cruciate ligament graft maturity with magnetic resonance imaging. Am J Sports Med, 2018, 46(5): 1143-1149.
|
| 8. |
Zhang Y, Liu S, Chen Q, et al. Maturity progression of the entire anterior cruciate ligament graft of insertion-preserved hamstring tendons by 5 years: a prospective randomized controlled study based on magnetic resonance imaging evaluation. Am J Sports Med, 2020, 48(12): 2970-2977.
|
| 9. |
Traven SA, Reeves RA, Xerogeanes JW, et al. Higher BMI predicts additional surgery at the time of ACL reconstruction. Knee Surg Sports Traumatol Arthrosc, 2019, 27(8): 2552-2557.
|
| 10. |
Ahn JH, Lee SH, Choi SH, et al. Magnetic resonance imaging evaluation of anterior cruciate ligament reconstruction using quadrupled hamstring tendon autografts: comparison of remnant bundle preservation and standard technique. Am J Sports Med, 2010, 38(9): 1768-1777.
|
| 11. |
Rahardja R, Zhu M, Love H, et al. Factors associated with revision following anterior cruciate ligament reconstruction: A systematic review of registry data. Knee, 2020, 27(2): 287-299.
|
| 12. |
Li HY, Li H, Wu ZY, et al. MRI-based tendon bone healing is related to the clinical functional scores at the first year after anterior cruciate ligament reconstruction with hamstring tendon autograft. Knee Surg Sports Traumatol Arthrosc, 2018, 26(2): 615-621.
|
| 13. |
Wen Z, Zhang H, Yan W, et al. Oval femoral tunnel technique is superior to the conventional round femoral tunnel technique using the hamstring tendon in anatomical anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2020, 28(7): 2245-2254.
|
| 14. |
Claes S, Verdonk P, Forsyth R, et al. The “ligamentization” process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature. Am J Sports Med, 2011, 39(11): 2476-2483.
|
| 15. |
Muller B, Bowman KF, Bedi A. ACL graft healing and biologics. Clin Sports Med, 2013, 32(1): 93-109.
|
| 16. |
陳榮進, 王衛明, 向先祥, 等. 富血小板血漿對前交叉韌帶重建術后移植物成熟度影響的臨床研究. 中國運動醫學雜志, 2020, 39(4): 257-262.
|
| 17. |
劉鵬鶴, 代志鵬, 趙甲軍, 等. 自體血纖維蛋白凝塊對前交叉韌帶重建術后腱-骨愈合影響的臨床研究. 中國修復重建外科雜志, 2017, 31(7): 799-804.
|
| 18. |
Kawakami Y, Takayama K, Matsumoto T, et al. Anterior cruciate ligament-derived stem cells transduced with BMP2 accelerate graft-bone integration after ACL reconstruction. Am J Sports Med, 2017, 45(3): 584-597.
|
| 19. |
Nakase J, Kitaoka K, Toratani T, et al. Grafted tendon healing in femoral and tibial tunnels after anterior cruciate ligament reconstruction. J Orthop Surg (Hong Kong), 2014, 22(1): 65-69.
|