| 1. |
Sun XC, Wang H, Li JH, et al. Repair of alveolar cleft bone defects by bone collagen particles combined with human umbilical cord mesenchymal stem cells in rabbit. Biomed Eng Online, 2020, 19(1): 62.
|
| 2. |
Chivu M, Tantar C, Hutu E, et al. Evaluation of bone healing of artificial defects in laboratory animals after covering with alloplastic material. Revista de Chimie, 2018, 69(7): 1728-1732.
|
| 3. |
Zhao YQ, Tang RK. Improvement of organisms by biomimetic mineralization: A material incorporation strategy for biological modification. Acta Biomater, 2020. doi: 10.1016/j.actbio.2020.06.038.
|
| 4. |
Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites. Materials Science and Engineering, 2007, 57(1-6): 1-27.
|
| 5. |
Xu SJ, Qiu ZY, Wu JJ, et al. Osteogenic differentiation gene expression profiling of hMSCs on hydroxyapatite and mineralized collagen. Tissue Eng Part A, 2016, 22(1-2): 170-181.
|
| 6. |
姜力銘, 宋戈, 夏商, 等. 轉化生長因子 β1 對人牙髓干細胞成骨分化作用研究. 中國實用口腔科雜志, 2018, 11(9): 530-533.
|
| 7. |
Qiao J, An N, Ouyang X. Quantification of growth factors in different platelet concentrates. Platelets, 2017, 28(8): 774-778.
|
| 8. |
Qin J, Wang L, Sun Y, et al. Concentrated growth factor increases Schwann cell proliferation and neurotrophic factor secretion and promotes functional nerve recovery in vivo. Int J Mol Med, 2016, 37(2): 493-500.
|
| 9. |
孫玉環, 何冬梅, 楊馳, 等. 自體濃縮生長因子膜對山羊髁突軟骨缺損的修復作用. 中國口腔頜面外科雜志, 2014, 12(3): 205-209.
|
| 10. |
Chen X, Chen Y, Hou Y, et al. Modulation of proliferation and differentiation of gingiva-derived mesenchymal stem cells by concentrated growth factors: Potential implications in tissue engineering for dental regeneration and repair. Int J Mol Med, 2019, 44(1): 37-46.
|
| 11. |
Fang D, Long Z, Hou J. Clinical Application of concentrated growth factor fibrin combined with bone repair materials in jaw defects. J Oral Maxillofac Surg, 2020, 78(6): 882-892.
|
| 12. |
?ankaya ZT, ünsal B, Gürbüz S, et al. Efficiency of concentrated growth factor in the surgical treatment of multiple adjacent papillary losses: A randomized, controlled, examiner-blinded clinical trial using CAD/CAM. Int J Periodontics Restorative Dent, 2020, 40(2): e73-e83.
|
| 13. |
Honda H, Tamai N, Naka N, et al. Bone tissue engineering with bone marrow-derived stromal cells integrated with concentrated growth factor in Rattus norvegicus calvaria defect model. J Artif Organs, 2013, 16(3): 305-315.
|
| 14. |
陳琦, 李石巖, 禹鑫 等. CGF 復合絲素蛋白-羥基磷灰石支架對兔下頜骨缺損的修復作用. 河北醫學, 2020, 26(4): 698-702.
|
| 15. |
Qiu ZY, Cui Y, Tao CS, et al. Mineralized collagen: rationale, current status, and clinical applications. Materials (Basel), 2015, 8(8): 4733-4750.
|
| 16. |
Dohan Ehrenfest DM, Doglioli P, de Peppo GM, et al. Choukroun’s platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose-dependent way. Arch Oral Biol, 2010, 55(3): 185-194.
|
| 17. |
Hong S, Chen W, Jiang B. A Comparative evaluation of concentrated growth factor and platelet-rich fibrin on the proliferation, migration, and differentiation of human stem cells of the apical papilla. J Endod, 2018, 44(6): 977-983.
|
| 18. |
Sohn DS, Heo JU, Kwak DH, et al. Bone regeneration in the maxillary sinus using an autologous fibrin-rich block with concentrated growth factors alone. Implant Dent, 2011, 20(5): 389-395.
|
| 19. |
Qiao J, An N. Effect of concentrated growth factors on function and Wnt3a expression of human periodontal ligament cells in vitro. Platelets, 2017, 28(3): 281-286.
|
| 20. |
Yu X, Ren H, Shang Q, et al. Effect of bone marrow mesenchymal stem cell combined with concentrate growth factor (CGF) on postmenopausal bone defects. Spine J, 2019, 19(9): S166.
|
| 21. |
Pirpir C, Yilmaz O, Candirli C, et al. Evaluation of effectiveness of concentrated growth factor on osseointegration. Int J Implant Dent, 2017, 3(1): 7.
|
| 22. |
宦俊, 竇磊, 嚴崎方, 等. 濃縮生長因子促人臍靜脈血管內皮細胞成血管化作用研究. 華西口腔醫學雜志, 2018, 36(3): 247-251.
|
| 23. |
Chen X, Wang J, Yu L, et al. Concentrated growth factor promotes bone marrow-derived stromal cells osteogenesis: Optimal concentration and cell proliferation time. J Biomater Tissue Eng, 2017, 7(7): 595-604.
|
| 24. |
Jun H, Lei D, Qi FY, et al. Effects of concentrated growth factors on the angiogenic properties of dental pulp cells and endothelial cells: An in vitro study. Braz Oral Res, 2018, 32: e48.
|
| 25. |
Masuki H, Okudera T, Watanebe T, et al. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF). Int J Implant Dent, 2016, 2(1): 19.
|
| 26. |
Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoieticorgans. Exp Hematol, 1976, 4(5): 267-274.
|
| 27. |
Liu Y, Ming L, Luo H, et al. Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Biomaterials, 2013, 34(38): 9998-10006.
|
| 28. |
Tang J, Yu H, Wang Y, et al. microRNA-199a counteracts glucocorticoid inhibition of bone marrow mesenchymal stem cell osteogenic differentiation through regulation of Klotho expression in vitro. Cell Biol Int, 2020, 44(12): 2532-2540.
|
| 29. |
Pei B, Wang W, Dunne N, et al. Applications of carbon nanotubes in bone tissue regeneration and engineering: Superiority, concerns, current advancements, and prospects. Nanomaterials, 2019, 9(10): 1501.
|
| 30. |
Li XJ, Yang HX, Zhang ZJ, et al. Platelet-rich fibrin exudate promotes the proliferation and osteogenic differentiation of human periodontal ligament cells in vitro. Mol Med Rep, 2018, 18: 4477-4485.
|
| 31. |
Li X, Yang H, Zhang Z, et al. Concentrated growth factor exudate enhances the proliferation of human periodontal ligament cells in the presence of TNF-α. Molecular medicine reports, 2019, 19(2): 943-950.
|