| 1. |
Klein GR, Parvizi J, Rapuri VR, et al. The effect of tibial polyethylene insert design on range of motion: evaluation of in vivo knee kinematics by a computerized navigation system during total knee arthroplasty. J Arthroplasty, 2004, 19(8): 986-991.
|
| 2. |
Sikorski JM. Alignment in total knee replacement. J Bone Joint Surg (Br), 2008, 90(9): 1121-1127.
|
| 3. |
Mason JB, Fehring TK, Estok R, et al. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty, 2007, 22(8): 1097-1106.
|
| 4. |
王波, 胡海濤, 潘健, 等. 膝關節骨性關節炎全膝關節置換術后下肢力線與早期臨床效果關系的研究. 中國骨與關節損傷雜志, 2015, 30(10): 1044-1048.
|
| 5. |
Schotanus MGM, Boonen B, van der Weegen W, et al. No difference in mid-term survival and clinical outcome between patient-specific and conventional instrumented total knee arthroplasty: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc, 2019, 27(5): 1463-1468.
|
| 6. |
Martijn S, Elke T, Marion H, et al. Favourable alignment outcomes with MRI-based patient-specific instruments in total knee arthroplasty. Knee Surgery Sports Traumatology Arthroscopy, 2018, 26(9).
|
| 7. |
Wu XD, Xiang BY, Schotanus M, et al. CT- versus MRI-based patient-specific instrumentation for total knee arthroplasty: A systematic review and meta-analysis. Surgeon, 2017, 15(6): 336-348.
|
| 8. |
An VV, Sivakumar BS, Phan K, et al. Accuracy of MRI-based vs. CT-based patient-specific instrumentation in total knee arthroplasty: A meta-analysis. J Orthop Sci, 2017, 22(1): 116-120.
|
| 9. |
邱冰, 張明嬌, 唐本森, 等. 基于 3D 打印個性化手術導航模板輔助下的人工全膝關節置換. 中國組織工程研究, 2015, (48): 7731-7735.
|
| 10. |
Gromov K, Korchi M, Thomsen MG, et al. What is the optimal alignment of the tibial and femoral components in knee arthroplasty? Acta Orthop, 2014, 85(5): 480-487.
|
| 11. |
吳昊, 查振剛, 熊高鑫, 等. 全膝關節置換術中精確截骨的療效觀察. 暨南大學學報 (自然科學與醫學版), 2010, 31(2): 178-181, 185.
|
| 12. |
Fitzgerald SJ, Trousdale RT. Why knees fail in 2011: patient, surgeon, or device? Orthopedics, 2011, 34(9): e513-515.
|
| 13. |
王志為, 溫亮, 于洋, 等. 個性化截骨工具輔助下運動學對線全膝關節置換的早期臨床結果. 中華外科雜志, 2020, 58(6): 457-463.
|
| 14. |
Daniilidis K, Tibesku CO. Frontal plane alignment after total knee arthroplasty using patient-specific instruments. Int Orthop, 2013, 37(1): 45-50.
|
| 15. |
Heyse TJ, Tibesku CO. Improved tibial component rotation in TKA using patient-specific instrumentation. Arch Orthop Trauma Surg, 2015, 135(5): 697-701.
|
| 16. |
Boonen B, Schotanus MG, Kerens B, et al. Intra-operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomised controlled trial. Knee Surg Sports Traumatol Arthrosc, 2013, 21(10): 2206-2212.
|
| 17. |
Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C. A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J, 2013, 95-B(3): 354-359.
|
| 18. |
劉帥, 姚慶強, 田書暢, 等. 3D 打印截骨槽導板與定位釘導板在全膝關節置換術中的對比研究. 中國骨與關節雜志, 2017, 6(5): 334-339.
|
| 19. |
Roh YW, Kim TW, Lee S, et al. Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res, 2013, 471(12): 3988-3995.
|
| 20. |
Kotela A, Lorkowski J, Kucharzewski M, et al. Corrigendum to “patient-specific CT-based instrumentation versus conventional instrumentation in total knee arthroplasty: a prospective randomized controlled study on clinical outcomes and in-hospital data”. Biomed Res Int, 2018, 2018: 6723963.
|
| 21. |
Kotela A, Lorkowski J, Kucharzewski M, et al. Patient- specific CT-based instrumentation versus conventional instrumentation in total knee arthroplasty: a prospective randomized controlled study on clinical outcomes and in-hospital data. Biomed Res Int, 2015, 2015: 165908.
|
| 22. |
Kim YH, Park JW, Kim JS, et al. The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. Int Orthop, 2014, 38(2): 379-385.
|
| 23. |
Church JS, Scadden JE, Gupta RR, et al. Embolic phenomena during computer-assisted and conventional total knee replacement. J Bone Joint Surg (Br), 2007, 89(4): 481-485.
|
| 24. |
Heyse TJ, Haas SB, Drinkwater D, et al. Intraarticular fibrinogen does not reduce blood loss in TKA: a randomized clinical trial. Clin Orthop Relat Res, 2014, 472(1): 272-276.
|
| 25. |
Mihalko WM, Boyle J, Clark LD, et al. The variability of intramedullary alignment of the femoral component during total knee arthroplasty. J Arthroplasty, 2005, 20(1): 25-28.
|
| 26. |
戴繁林, 胡立新, 王小武, 等. 全膝關節置換術中股骨假體矢狀面置入角度與假體中遠期磨損的相關性研究. 中國骨與關節損傷雜志, 2019, 34(8): 796-799.
|
| 27. |
Leo P, Martin M, Georg B, et al. Patient-specific instrumentation improved three-dimensional accuracy in total knee arthroplasty: a comparative radiographic analysis of 1257 total knee arthroplasties. J Orthop Surg Res, 2019, 14(10): 437.
|
| 28. |
Voleti PB, Hamula MJ, Baldwin KD, et al. Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty. J Arthroplasty, 2014, 29(9): 1709-1712.
|
| 29. |
Gong S, Xu W, Wang R, et al. Patient-specific instrumentation improved axial alignment of the femoral component, operative time and perioperative blood loss after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1083-1095.
|
| 30. |
余進偉, 郭甲瑞, 陳旭, 等. 3D 打印模板輔助關節置換治療膝骨關節炎的前瞻性研究. 實用骨科雜志, 2018, 24(9): 782-785, 836.
|
| 31. |
王向東, 韓萍, 趙虎, 等. 腕關節多層螺旋 CT 掃描參數、圖像質量和輻射劑量的關系. 解剖學報, 2010, 41(6): 905-908.
|
| 32. |
White D, Chelule KL, Seedhom BB. Accuracy of MRI vs CT imaging with particular reference to patient specific templates for total knee replacement surgery. Int J Med Robot, 2008, 4(3): 224-231.
|
| 33. |
Ensini A, Timoncini A, Cenni F, et al. Intra- and post-operative accuracy assessments of two different patient-specific instrumentation systems for total knee replacement. Knee Surg Sports Traumatol Arthrosc, 2014, 22(3): 621-629.
|