| 1. |
Wang L, Liu J, Chin D. Progress in tuberculosis control and the evolving public-health system in China. Lancet (London, England), 2007, 369(9562): 691-696.
|
| 2. |
Yao Y, Song W, Wang K, et al. Features of 921 patients with spinal tuberculosis: A 16-year investigation of a general hospital in southwest China. Orthopedics, 2017, 40(6): e1017-e1023.
|
| 3. |
Authorless. The epidemiology of spinal tuberculosis in the United States: an analysis of 2002-2011 data. J Neurosurg Spine, 2017, 26(4): 507-512.
|
| 4. |
毛貝尼, 張鐘, 付維力, 等. 中國骨質疏松性骨折疾病負擔的系統評價. 中國循證醫學雜志, 2018, 18(2): 151-155.
|
| 5. |
張思萌, 李放, 劉秀梅, 等. 老年人胸腰椎椎弓根螺釘內固定術后螺釘松動原因分析. 中華老年醫學雜志, 2015, 34(11): 1178-1181.
|
| 6. |
Galbusera F, Volkheimer D, Reitmaier S, et al. Pedicle screw loosening: a clinically relevant complication? Eur Spine J, 2015, 24(5): 1005-1016.
|
| 7. |
Hoppe S, Keel MJ. Pedicle screw augmentation in osteoporotic spine: indications, limitations and technical aspects. Eur J Trauma Emerg Surg, 2017, 43(1): 3-8.
|
| 8. |
Chen YY, Feng JY, Ting WY, et al. Increased risk of incident osteoporosis and osteoporotic fracture in tuberculosis patients: a population-based study in a tuberculosis-endemic area. Osteoporos Int, 2017, 28(5): 1711-1721.
|
| 9. |
荊丹峰, 許藝薺, 孫太存, 等. 骨水泥注入中空側孔椎弓根螺釘內固定骨質疏松性腰椎退變: 強化技術要點. 中國組織工程研究, 2014, 18(47): 7556-7560.
|
| 10. |
樊仕才, 江振華, 朱青安, 等. 聚甲基丙烯酸甲酯強化椎弓根螺釘內固定對骨質疏松不穩定性胸腰椎損傷穩定性的影響. 中華創傷雜志, 2003, 19(6): 358-361.
|
| 11. |
吳志彬, 劉宏建, 尚國偉, 等. 骨水泥強化與常規椎弓根螺釘固定治療老年退行性腰椎疾病的比較. 中華骨科雜志, 2015, 35(10): 983-989.
|
| 12. |
Zou MX, Wang XB, Li J, et al. Spinal tuberculosis of the lumbar spine after percutaneous vertebral augmentation (vertebroplasty or kyphoplasty). Spine J, 2015, 15(6): e1-6.
|
| 13. |
Ge CY, He LM, Zheng YH, et al. Tuberculous spondylitis following kyphoplasty: a case report and review of the literature. Medicine (Baltimore), 2016, 95(11): e2940.
|
| 14. |
Jia-Jia S, Zhi-Yong S, Zhong-Lai Q, et al. Tuberculous spondylitis after vertebral augmentation: A case report with a literature review. J Int Med Res, 2018, 46(2): 916-924.
|
| 15. |
Khanna K, Sabharwal S. Spinal tuberculosis: a comprehensive review for the modern spine surgeon. Spine J, 2019, 19(11): 1858-1870.
|
| 16. |
Wang YX, Zhang HQ, Li M, et al. Debridement, interbody graft using titanium mesh cages, posterior instrumentation and fusion in the surgical treatment of multilevel noncontiguous spinal tuberculosis in elderly patients via a posterior-only. Injury, 2017, 48(2): 378-383.
|
| 17. |
徐曉杰, 李梅. 廢用性骨質疏松癥診治進展. 中華骨質疏松和骨礦鹽疾病雜志, 2015, 8(1): 69-73.
|
| 18. |
Gupta KB, Gupta R, Atreja A, et al. Tuberculosis and nutrition. Lung India, 2009, 26(1): 9-16.
|
| 19. |
Okamura K, Nagata N, Wakamatsu K, et al. Hypoalbuminemia and lymphocytopenia are predictive risk factors for in-hospital mortality in patients with tuberculosis. Intern Med, 2013, 52(4): 439-444.
|
| 20. |
Rajasekaran S, Rishi MugeshKanna P, Shetty AP. Closing-opening wedge osteotomy for severe, rigid, thoracolumbar post-tubercular kyphosis. Eur Spine J, 2011, 20(3): 343-348.
|
| 21. |
Shi S, Ying X, Zheng Q, et al. Application of cortical bone trajectory screws in elderly patients with lumbar spinal tuberculosis. World Neurosurg, 2018, 117: e82-e89.
|
| 22. |
Chao KH, Lai YS, Chen WC, et al. Biomechanical analysis of different types of pedicle screw augmentation: a cadaveric and synthetic bone sample study of instrumented vertebral specimens. Med Eng Phys, 2013, 35(10): 1506-1512.
|
| 23. |
Inceoglu S, Ferrara L, McLain RF. Pedicle screw fixation strength: pullout versus insertional torque. Spine J, 2004, 4(5): 513-518.
|
| 24. |
Liu D, Wu ZX, Pan XM, et al. Biomechanical comparison of different techniques in primary spinal surgery in osteoporotic cadaveric lumbar vertebrae: expansive pedicle screw versus polymethylmethacrylate-augmented pedicle screw. Arch Orthop Trauma Surg, 2011, 131(9): 1227-1232.
|
| 25. |
Yuan Q, Zhang G, Wu J, et al. Clinical evaluation of the polymethylmethacrylate-augmented thoracic and lumbar pedicle screw fixation guided by the three-dimensional navigation for the osteoporosis patients. Eur Spine J, 2015, 24(5): 1043-1050.
|
| 26. |
Kueny RA, Kolb JP, Lehmann W, et al. Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing. Eur Spine J, 2014, 23(10): 2196-2202.
|
| 27. |
Tai CL, Tsai TT, Lai PL, et al. A biomechanical comparison of expansive pedicle screws for severe osteoporosis: The effects of screw design and cement augmentation. PLoS One, 2015, 10(12): e0146294.
|
| 28. |
Wang W, Baran GR, Garg H, et al. The benefits of cement augmentation of pedicle screw fixation are increased in osteoporotic bone: A finite element analysis. Spine Deform, 2014, 2(4): 248-259.
|
| 29. |
Weiser L, Huber G, Sellenschloh K, et al. Time to augment?! Impact of cement augmentation on pedicle screw fixation strength depending on bone mineral density. Eur Spine J, 2018, 27(8): 1964-1971.
|
| 30. |
Chandra VV, Prasad BC, Jagadeesh MA, et al. Segmental polymethylmethacrylate-augmented fenestrated pedicle screw fixation for lumbar spondylolisthesis in patients with osteoporosis—A case series and review of literature. Neurol India, 2017, 65(1): 89-95.
|
| 31. |
Frankel BM, D’Agostino S, Wang C. A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg Spine, 2007, 7(1): 47-53.
|
| 32. |
劉達, 謝慶云, 張波, 等. 重度骨質疏松腰椎中椎弓根螺釘穩定性與骨水泥注射劑量的相關性. 中國脊柱脊髓雜志, 2015, 25(4): 355-360.
|
| 33. |
Choma TJ, Frevert WF, Carson WL, et al. Biomechanical analysis of pedicle screws in osteoporotic bone with bioactive cement augmentation using simulated in vivo multicomponent loading. Spine (Phila Pa 1976), 2011, 36(6): 454-462.
|
| 34. |
Moon BJ, Cho BY, Choi EY, et al. Polymethylmethacrylate-augmented screw fixation for stabilization of the osteoporotic spine: a three-year follow-up of 37 patients. J Korean Neurosurg Soc, 2009, 46(4): 305-311.
|
| 35. |
Lin HH, Chang MC, Wang ST, et al. The fates of pedicle screws and functional outcomes in a geriatric population following polymethylmethacrylate augmentation fixation for the osteoporotic thoracolumbar and lumbar burst fractures with mean ninety five month follow-up. Int Orthop, 2018, 42(6): 1313-1320.
|
| 36. |
Hu MH, Wu HT, Chang MC, et al. Polymethylmethacrylate augmentation of the pedicle screw: the cement distribution in the vertebral body. Eur Spine J, 2011, 20(8): 1281-1288.
|
| 37. |
Martín-Fernández M, López-Herradón A, Pi?era AR, et al. Potential risks of using cement-augmented screws for spinal fusion in patients with low bone quality. Spine J, 2017, 17(8): 1192-1199.
|
| 38. |
Paré PE, Chappuis JL, Rampersaud R, et al. Biomechanical evaluation of a novel fenestrated pedicle screw augmented with bone cement in osteoporotic spines. Spine (Phila Pa 1976), 2011, 36(18): E1210-1214.
|
| 39. |
Guo HZ, Tang YC, Guo DQ, et al. The cement leakage in cement-augmented pedicle screw instrumentation in degenerative lumbosacral diseases: a retrospective analysis of 202 cases and 950 augmented pedicle screws. Eur Spine J, 2019, 28(7): 1661-1669.
|
| 40. |
Tan QC, Wu JW, Peng F, et al. Augmented PMMA distribution: improvement of mechanical property and reduction of leakage rate of a fenestrated pedicle screw with diameter-tapered perforations. J Neurosurg Spine, 2016, 24(6): 971-977.
|
| 41. |
Liu D, Zhang B, Xie QY, et al. Biomechanical comparison of pedicle screw augmented with different volumes of polymethylmethacrylate in osteoporotic and severely osteoporotic cadaveric lumbar vertebrae: an experimental study. Spine J, 2016, 16(9): 1124-1132.
|
| 42. |
Watanabe K, Lenke LG, Bridwell KH, et al. Proximal junctional vertebral fracture in adults after spinal deformity surgery using pedicle screw constructs: analysis of morphological features. Spine (Phila Pa 1976), 2010, 35(2): 138-145.
|