| 1. |
El Saman A, Meier S, Sander A, et al. Reduced loosening rate and loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly. Eur J Trauma Emerg Surg, 2013, 39(5): 455-460.
|
| 2. |
白璧輝, 謝興文, 李鼎鵬, 等. 我國近 5 年來骨質疏松癥流行病學研究現狀. 中國骨質疏松雜志, 2018, 24(2): 253-258.
|
| 3. |
Skinner R, Maybee J, Transfeldt E, et al. Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study. Spine (Phila Pa 1976), 1990, 15(3): 195-201.
|
| 4. |
Chang MC, Liu CL, Chen TH. Polymethylmethacrylate augmentation of pedicle screw for osteoporotic spinal surgery: a novel technique. Spine (Phila Pa 1976), 2008, 33(10): E317-E324.
|
| 5. |
Santoni BG, Hynes RA, McGilvray KC, et al. Cortical bone trajectory for lumbar pedicle screws. Spine J, 2009, 9(5): 366-373.
|
| 6. |
Marcus HJ, Cundy TP, Nandi D, et al. Robot-assisted and fluoroscopy-guided pedicle screw placement: a systematic review. Eur Spine J, 2014, 23(2): 291-297.
|
| 7. |
Kaito T, Matsukawa K, Abe Y, et al. Cortical pedicle screw placement in lumbar spinal surgery with a patient-matched targeting guide: A cadaveric study. J Orthop Sci, 2018, 23(6): 865-869.
|
| 8. |
Babu R, Park JG, Mehta AI, et al. Comparison of superior-level facet joint violations during open and percutaneous pedicle screw placement. Neurosurgery, 2012, 71(5): 962-970.
|
| 9. |
Matsukawa K, Yato Y, Imabayashi H, et al. Biomechanical evaluation of lumbar pedicle screws in spondylolytic vertebrae: comparison of fixation strength between the traditional trajectory and a cortical bone trajectory. J Neurosurg Spine, 2016, 24(6): 910-915.
|
| 10. |
Matsukawa K, Yato Y, Kato T, et al. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine (Phila Pa 1976), 2014, 39(4): E240-E245.
|
| 11. |
Kojima K, Asamoto S, Kobayashi Y, et al. Cortical bone trajectory and traditional trajectory—a radiological evaluation of screw-bone contact. Acta Neurochir (Wien), 2015, 157(7): 1173-1178.
|
| 12. |
金海明, 徐道亮, 潘翔翔, 等. 椎弓根皮質骨螺釘固定與傳統椎弓根螺釘固定釘道周圍骨質 CT 值比較. 中國脊柱脊髓雜志, 2016, 26(12): 1115-1120.
|
| 13. |
楊民毅, 劉西紡, 劉世長, 等. 皮質骨螺釘通道技術在骨質疏松腰椎退行性疾病中的應用. 實用骨科雜志, 2019, 25(3): 245-249.
|
| 14. |
錢立雄, 郝定均, 孫宏慧, 等. 骨水泥強化椎弓根螺釘固定與皮質骨軌跡螺釘固定治療腰椎退變性疾病合并骨質疏松的效果比較. 臨床醫學研究與實踐, 2019, 4(13): 87-90.
|
| 15. |
Ueno M, Imura T, Inoue G, et al. Posterior corrective fusion using a double-trajectory technique (cortical bone trajectory combined with traditional trajectory) for degenerative lumbar scoliosis with osteoporosis: technical note. J Neurosurg Spine, 2013, 19(5): 600-607.
|
| 16. |
Takata Y, Matsuura T, Higashino K, et al. Hybrid technique of cortical bone trajectory and pedicle screwing for minimally invasive spine reconstruction surgery: a technical note. J Med Invest, 2014, 61(3-4): 388-392.
|
| 17. |
沈為光, 何伯圣, 龔沈初. 腰椎后路固定融合術后鄰近節段退變的研究進展. 醫學綜述, 2019, 25(14): 2832-2836.
|
| 18. |
李超, 阮狄克, 何勍, 等. 腰椎減壓融合術中保留頭端后部韌帶復合體結構完整性對相鄰節段退變的影響. 脊柱外科雜志, 2016, 14(5): 262-266.
|
| 19. |
Wang H, Ma L, Yang D, et al. Incidence and risk factors for the progression of proximal junctional kyphosis in degenerative lumbar scoliosis following long instrumented posterior spinal fusion. Medicine (Baltimore), 2016, 95(32): e4443.
|
| 20. |
Etebar S, Cahill DW. Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg, 1999, 90(2 Suppl): 163-169.
|
| 21. |
Min JH, Jang JS, Jung BJ, et al. The clinical characteristics and risk factors for the adjacent segment degeneration in instrumented lumbar fusion. J Spinal Disord Tech, 2008, 21(5): 305-309.
|
| 22. |
Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976), 2007, 32(3): E111-E120.
|
| 23. |
楊俊松, 郝定均, 劉團江, 等. 脊柱機器人與透視輔助下經皮植釘治療腰椎滑脫癥中植釘精度的對比研究. 中國修復重建外科雜志, 2018, 32(11): 1371-1376.
|
| 24. |
田野, 張嘉男, 陳浩, 等. 脊柱機器人與傳統透視輔助下微創經皮復位內固定術治療單節段無神經癥狀胸腰椎骨折對比研究. 中國修復重建外科雜志, 2020, 34(1): 69-75.
|