- 1. Shanxi Medical University, Taiyuan Shanxi, 030000, P.R.China;
- 2. Department of Joint Surgery, Second Hospital of Shanxi Medical University, Taiyuan Shanxi, 030000, P.R.China;
                                         
Citation: YANG Dinglong, ZHANG Zhiqiang. The role of helper T cell in the pathogenesis of osteoarthritis. Chinese Journal of Reparative and Reconstructive Surgery, 2020, 34(7): 932-938. doi: 10.7507/1002-1892.201910063 Copy
Copyright ? the editorial department of Chinese Journal of Reparative and Reconstructive Surgery of West China Medical Publisher. All rights reserved
| 1. | 賈笛, 李彥林, 王坤, 等. 非編碼 RNA 調控骨關節炎的分子生物學研究進展. 中國修復重建外科雜志, 2017, 31(3): 374-378. | 
| 2. | Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med, 2000, 133(8): 635-646. | 
| 3. | Li Y, Xiao W, Luo W, et al. Alterations of amino acid metabolism in osteoarthritis: its implications for nutrition and health. Amino Acids, 2016, 48(4): 907-914. | 
| 4. | Malfait AM. Osteoarthritis year in review 2015: biology. Osteoarthritis Cartilage, 2016, 24(1): 21-26. | 
| 5. | 鐘禮倫, 彭穎君, 梁桂平, 等. 腸道菌群、免疫與骨關節炎關系研究進展. 實用骨科雜志, 2019, 25(10): 916-919. | 
| 6. | Sakkas LI, Platsoucas CD. The role of T cells in the pathogenesis of osteoarthritis. Arthritis Rheum, 2007, 56(2): 409-424. | 
| 7. | de Lange-Brokaar BJ, Ioan-Facsinay A, van Osch GJ, et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthritis Cartilage, 2012, 20(12): 1484-1499. | 
| 8. | Ponchel F, Burska AN, Hensor EM, et al. Changes in peripheral blood immune cell composition in osteoarthritis. Osteoarthritis Cartilage, 2015, 23(11): 1870-1878. | 
| 9. | Srivastava RK, Dar HY, Mishra PK. Immunoporosis: immunology of osteoporosis-role of T cells. Front Immunol, 2018, 9: 657. | 
| 10. | McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol, 2007, 7(6): 429-442. | 
| 11. | ?ledzińska A, Vila de Mucha M, Bergerhoff K, et al. Regulatory T cells restrain Interleukin-2- and Blimp-1-dependent acquisition of cytotoxic function by CD4+ T cells. Immunity, 2000, 52(1): 151-166.e6. | 
| 12. | Li YS, Luo W, Zhu SA, et al. T cells in osteoarthritis: Alterations and beyond. Front Immunol, 2017, 8: 356. | 
| 13. | Pessler F, Chen LX, Dai L, et al. A histomorphometric analysis of synovial biopsies from individuals with Gulf War Veterans’ Illness and joint pain compared to normal and osteoarthritis synovium. Clin Rheumatol, 2008, 27(9): 1127-1134. | 
| 14. | Alsalameh S, Mollenhauer J, Hain N, et al. Cellular immune response toward human articular chondrocytes. T cell reactivities against chondrocyte and fibroblast membranes in destructive joint diseases. Arthritis Rheum, 1990, 33(10): 1477-1486. | 
| 15. | Sakata M, Masuko-Hongo K, Nakamura H, et al. Osteoarthritic articular chondrocytes stimulate autologous T cell responses in vitro. Clin Exp Rheumatol, 2003, 21(6): 704-710. | 
| 16. | Champion BR, Poole AR. Immunity to homologous type Ⅲ collagen after partial meniscectomy and sham surgery in rabbits. Arthritis Rheum, 1982, 25(3): 274-287. | 
| 17. | Arkest?l K, Mints M, Enocson A, et al. CCR2 upregulated on peripheral T cells in osteoarthritis but not in bone marrow. Scand J Immunol, 2018, 88(6): e12722. | 
| 18. | Chen J, Sun G, Chen F, et al. T-cell immunoglobulin domain and mucin domain 3 polymorphism affects cytokine expression in different cells and is associated with increased susceptibility to knee osteoarthritis. Gene, 2015, 566(1): 32-36. | 
| 19. | 黃輝, 周揚, 平鍵, 等. Th1/Th2 細胞平衡與纖維增生性疾病的相關性. 臨床肝膽病雜志, 2019, 35(4): 883-886. | 
| 20. | Raphael I, Nalawade S, Eagar TN, et al. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine, 2015, 74(1): 5-17. | 
| 21. | Ren W, Liu G, Chen S, et al. Melatonin signaling in T cells: Functions and applications. J Pineal Res, 2017, 62(3). | 
| 22. | Rosshirt N, Hagmann S, Tripel E, et al. A predominant Th1 polarization is present in synovial fluid of end-stage osteoarthritic knee joints: analysis of peripheral blood, synovial fluid and synovial membrane. Clin Exp Immunol, 2019, 195(3): 395-406. | 
| 23. | Haynes MK, Hume EL, Smith JB. Phenotypic characterization of inflammatory cells from osteoarthritic synovium and synovial fluids. Clin Immunol, 2002, 105(3): 315-325. | 
| 24. | Yamada H, Nakashima Y, Okazaki K, et al. Preferential accumulation of activated Th1 cells not only in rheumatoid arthritis but also in osteoarthritis joints. J Rheumatol, 2011, 38(8): 1569-1575. | 
| 25. | Dolganiuc A, Stavaru C, Anghel M, et al. Shift toward T lymphocytes with Th1 and Tc1 cytokine-secterion profile in the joints of patients with osteoarthritis. Roum Arch Microbiol Immunol, 1999, 58(3-4): 249-258. | 
| 26. | Chen DY, Lan JL, Lin FJ, et al. Predominance of Th1 cytokine in peripheral blood and pathological tissues of patients with active untreated adult onset Stillxs disease. Ann Rheum Dis, 2004, 63(10): 1300-1306. | 
| 27. | Moradi B, Rosshirt N, Hagmann S, et al. Osteoarthritis progression is accompanied by inflammatory CD4+ T-Cell polarisation. Osteoarthritis Cartilage, 2012, 20(Supplement 1): S232-S233. | 
| 28. | Ishii H, Tanaka H, Katoh K, et al. Characterization of infiltrating T cells and Th1/Th2-type cytokines in the synovium of patients with osteoarthritis. Osteoarthritis Cartilage, 2002, 10(4): 277-281. | 
| 29. | Scott JL, Gabrielides C, Davidson RK, et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis, 2010, 69(8): 1502-1510. | 
| 30. | Schlaak JF, Pfers I, Meyer Zum Buschenfelde KH, et al. Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol, 1996, 14(2): 155-162. | 
| 31. | Haseeb A, Haqqi TM. Immunopathogenesis of osteoarthritis. Clin Immunol, 2013, 146(3): 185-196. | 
| 32. | Lotz M, Terkeltaub R, Villiger PM. Cartilage and joint inflammation. Regulation of IL-8 expression by human articular chondrocytes. J Immunol, 1992, 148(2): 466-473. | 
| 33. | Alaaeddine N, Olee T, Hashimoto S, et al. Production of the chemokine RANTES by articular chondrocytes and role in cartilage degradation. Arthritis Rheum, 2001, 44(7): 1633-1643. | 
| 34. | Saklatvala J. Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature, 1986, 322(6079): 547-549. | 
| 35. | Li H, Xie S, Qi Y, et al. TNF-alpha increases the expression of inflammatory factors in synovial fibroblasts by inhibiting the PI3K/AKT pathway in a rat model of monosodium iodoacetate-induced osteoarthritis. Exp Ther Med, 2018, 16(6): 4737-4744. | 
| 36. | Dar HY, Azam Z, Anupam R, et al. Osteoimmunology: The nexus between bone and immune system. Front Biosci (Landmrk Ed), 2018, 23: 464-492. | 
| 37. | Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol, 2010, 28: 445-489. | 
| 38. | Hegemann N, Wondimu A, Kohn B, et al. Cytokine profile in canine immune-mediated polyarthritis and osteoarthritis. Vet Comp Orthop Traumatol, 2005, 18(2): 67-72. | 
| 39. | Sakkas LI, Scanzello C, Johanson N, et al. T cells and T-cell cytokine transcripts in the synovial membrane in patients with osteoarthritis. Clin Diagn Lab Immunol, 1998, 5(4): 430-437. | 
| 40. | Angkasekwinai P. Th9 cells in allergic disease. Curr Allergy Asthma Rep, 2019, 19(5): 29. | 
| 41. | Schmitt E, Klein M, Bopp T. Th9 cells, new players in adaptive immunity. Trends Immunol, 2014, 35(2): 61-68. | 
| 42. | Kundu-Raychaudhuri S, Abria C, Raychaudhuri SP. IL-9, a local growth factor for synovial T cells in inflammatory arthritis. Cytokine, 2016, 79: 45-51. | 
| 43. | Qi C, Shan Y, Wang J, et al. Circulating T helper 9 cells and increased serum interleukin-9 levels in patients with knee osteoarthritis. Clin Exp Pharmacol Physiol, 2016, 43(5): 528-534. | 
| 44. | Hou MM, Li YF, He LL, et al. Proportions of Th17 cells and Th17-related cytokines in neuromyelitis optica spectrum disorders patients: A meta-analysis. Int Immunopharmacol, 2019, 75: 105793. | 
| 45. | Shabgah AG, Fattahi E, Shahneh FZ. Interleukin-17 in human inflammatory diseases. Postepy Dermatol Alergol, 2014, 31(4): 256-261. | 
| 46. | Zhan FX, Li J, Fang M, et al. Importance of Th22 cell disequilibrium in immune thrombocytopenic purpura. Med Sci Monitor, 2018, 24: 8767-8772. | 
| 47. | Zhang HR, Jiang ZZ, Zhang LY. Dual effect of T helper cell 17 (Th17) and regulatory T cell (Treg) in liver pathological process: From occurrence to end stage of disease. Int Immunopharmacol, 2019, 69: 50-59. | 
| 48. | Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov, 2012, 11(10): 763-776. | 
| 49. | Zhang L, Li YG, Li YH, et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS One, 2012, 7(4): e31000. | 
| 50. | Askari A, Naghizadeh MM, Homayounfar R, et al. Increased serum levels of IL-17A and IL-23 are associated with decreased vitamin D3 and increased pain in osteoarthritis. PLoS One, 2016, 11(11): e0164757. | 
| 51. | 張海森, 白玉明, 劉暢, 等. 血清及滑液白介素-17 水平與膝骨關節炎退變及膝痛程度的相關性研究. 中國醫藥導報, 2016, 13(33): 84-87. | 
| 52. | Wang K, Xu J, Cai J, et al. Serum levels of resistin and interleukin-17 are associated with increased cartilage defects and bone marrow lesions in patients with knee osteoarthritis. Mod Rheumatol, 2017, 27(2): 339-344. | 
| 53. | Chabaud M, Durand JM, Buchs N, et al. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum, 1999, 42(5): 963-970. | 
| 54. | Hussein MR, Fathi NA, El-Din AM, et al. Alterations of the CD4(+), CD8 (+) T cell subsets, interleukins-1beta, IL-10, IL-17, tumor necrosis factor-alpha and soluble intercellular adhesion molecule-1 in rheumatoid arthritis and osteoarthritis: preliminary observations. Pathol Oncol Res, 2008, 14(3): 321-328. | 
| 55. | Sarkar S, Justa S, Brucks M, et al. Interleukin (IL)-17A, F and AF in inflammation: a study in collagen-induced arthritis and rheumatoid arthritis. Clin Exp Immunol, 2014, 177(3): 652-661. | 
| 56. | Monasterio G, Castillo F, Rojas L, et al. Th1/Th17/Th22 immune response and their association with joint pain, imagenological bone loss, RANKL expression and osteoclast activity in temporomandibular joint osteoarthritis: A preliminary report. J Oral Rehabil, 2018, 45(8): 589-597. | 
| 57. | Wang K, Xu J, Cai J, et al. Serum levels of interleukin-17 and adiponectin are associated with infrapatellar fat pad volume and signal intensity alteration in patients with knee osteoarthritis. Arthritis Res Ther, 2016, 18(1): 193. | 
| 58. | Deligne C, Casulli S, Pigenet A, et al. Differential expression of interleukin-17 and interleukin-22 in inflamed and non-inflamed synovium from osteoarthritis patients. Osteoarthritis Cartilage, 2015, 23(11): 1843-4852. | 
| 59. | Van Bezooijen RL, Van Der Wee-Pals L, Papapoulos SE, et al. Interleukin 17 synergises with tumour necrosis factor alpha to induce cartilage destruction in vitro. Ann Rheum Dis, 2002, 61(10): 870-876. | 
| 60. | Liu H, Pope RM. The role of apoptosis in rheumatoid arthritis. Curr Opin Pharmacol, 2003, 3(3): 317-322. | 
| 61. | Malemud CJ, Islam N, Haqqi TM. Pathophysiological mechanisms in osteoarthritis lead to novel therapeutic strategies. Cells Tissues Organs, 2003, 174(1-2): 34-48. | 
| 62. | Miyazaki Y, Nakayamada S, Kubo S, et al. Th22 cells promote osteoclast differentiation via production of IL-22 in rheumatoid arthritis. Front Immunol, 2018, 9: 2901. | 
| 63. | Sanaii A, Shirzad H, Haghighian M, et al. Role of Th22 cells in Helicobacter pylori-related gastritis and peptic ulcer diseases. Mol Biol Rep, 2019, 46(6): 5703-5712. | 
| 64. | Trifari S, Kaplan CD, Tran EH, et al. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol, 2009, 10(8): 864-871. | 
| 65. | Xiao CG, Zhou QL, Li XZ, et al. Losartan and dexamethasone may inhibit chemotaxis to reduce the infiltration of Th22 cells in IgA nephropathy. Int Immunopharmacol, 2017, 42: 203-208. | 
| 66. | Zhang L, Li JM, Liu XG, et al. Elevated Th22 cells correlated with Th17 cells in patients with rheumatoid arthritis. J Clin Immunol, 2011, 31(4): 606-614. | 
| 67. | Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol, 2011, 29: 621-663. | 
| 68. | Song H, Liu A, Liu G, et al. T follicular regulatory cells suppress Tfh-mediated B cell help and synergistically increase IL-10-producing B cells in breast carcinoma. Immunol Res, 2019, 67(4-5): 416-423. | 
| 69. | Zhang J, Liu W, Wen B, et al. Circulating CXCR3(+) Tfh cells positively correlate with neutralizing antibody responses in HCV-infected patients. Sci Rep, 2019, 9(1): 10090. | 
| 70. | Shan Y, Qi C, Liu Y, et al. Increased frequency of peripheral blood follicular helper T cells and elevated serum IL-21 levels in patients with knee osteoarthritis. Mol Med Rep, 2017, 15(3): 1095-1102. | 
| 71. | Penatti A, Facciotti F, De Matteis R, et al. Differences in serum and synovial CD4+ T cells and cytokine profiles to stratify patients with inflammatory osteoarthritis and rheumatoid arthritis. Arthritis Res Ther, 2017, 19(1): 103. | 
| 72. | Chu Y, Wang F, Zhou M, et al. A preliminary study on the characterization of follicular helper T (Tfh) cells in rheumatoid arthritis synovium. Acta Histochem, 2014, 116(3): 539-543. | 
| 73. | de Jong H, Berlo SE, Hombrink P, et al. Cartilage proteoglycan aggrecan epitopes induce proinflammatory autoreactive T-cell responses in rheumatoid arthritis and osteoarthritis. Ann Rheum Dis, 2010, 69(1): 255-262. | 
| 74. | 張海森, 白玉明, 劉暢, 等. 關節腔注射富血小板血漿對膝骨關節炎患者關節液及血漿中 IL-17 的影響. 中國修復重建外科雜志, 2017, 31(8): 918-921. | 
| 75. | 蔡松濤, 孫京濤, 魏瑄. 枸杞多糖抑制核因子κB (NF-κB) 通路降低骨關節炎軟骨細胞炎性細胞因子水平. 細胞與分子免疫學雜志, 2018, 34(11): 989-993. | 
| 76. | Ren W, Yin J, Duan J, et al. mTORC1 signaling and IL-17 expression: Defining pathways and possible therapeutic targets. Eur J Immunol, 2016, 46(2): 291-299. | 
- 1. 賈笛, 李彥林, 王坤, 等. 非編碼 RNA 調控骨關節炎的分子生物學研究進展. 中國修復重建外科雜志, 2017, 31(3): 374-378.
- 2. Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med, 2000, 133(8): 635-646.
- 3. Li Y, Xiao W, Luo W, et al. Alterations of amino acid metabolism in osteoarthritis: its implications for nutrition and health. Amino Acids, 2016, 48(4): 907-914.
- 4. Malfait AM. Osteoarthritis year in review 2015: biology. Osteoarthritis Cartilage, 2016, 24(1): 21-26.
- 5. 鐘禮倫, 彭穎君, 梁桂平, 等. 腸道菌群、免疫與骨關節炎關系研究進展. 實用骨科雜志, 2019, 25(10): 916-919.
- 6. Sakkas LI, Platsoucas CD. The role of T cells in the pathogenesis of osteoarthritis. Arthritis Rheum, 2007, 56(2): 409-424.
- 7. de Lange-Brokaar BJ, Ioan-Facsinay A, van Osch GJ, et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthritis Cartilage, 2012, 20(12): 1484-1499.
- 8. Ponchel F, Burska AN, Hensor EM, et al. Changes in peripheral blood immune cell composition in osteoarthritis. Osteoarthritis Cartilage, 2015, 23(11): 1870-1878.
- 9. Srivastava RK, Dar HY, Mishra PK. Immunoporosis: immunology of osteoporosis-role of T cells. Front Immunol, 2018, 9: 657.
- 10. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol, 2007, 7(6): 429-442.
- 11. ?ledzińska A, Vila de Mucha M, Bergerhoff K, et al. Regulatory T cells restrain Interleukin-2- and Blimp-1-dependent acquisition of cytotoxic function by CD4+ T cells. Immunity, 2000, 52(1): 151-166.e6.
- 12. Li YS, Luo W, Zhu SA, et al. T cells in osteoarthritis: Alterations and beyond. Front Immunol, 2017, 8: 356.
- 13. Pessler F, Chen LX, Dai L, et al. A histomorphometric analysis of synovial biopsies from individuals with Gulf War Veterans’ Illness and joint pain compared to normal and osteoarthritis synovium. Clin Rheumatol, 2008, 27(9): 1127-1134.
- 14. Alsalameh S, Mollenhauer J, Hain N, et al. Cellular immune response toward human articular chondrocytes. T cell reactivities against chondrocyte and fibroblast membranes in destructive joint diseases. Arthritis Rheum, 1990, 33(10): 1477-1486.
- 15. Sakata M, Masuko-Hongo K, Nakamura H, et al. Osteoarthritic articular chondrocytes stimulate autologous T cell responses in vitro. Clin Exp Rheumatol, 2003, 21(6): 704-710.
- 16. Champion BR, Poole AR. Immunity to homologous type Ⅲ collagen after partial meniscectomy and sham surgery in rabbits. Arthritis Rheum, 1982, 25(3): 274-287.
- 17. Arkest?l K, Mints M, Enocson A, et al. CCR2 upregulated on peripheral T cells in osteoarthritis but not in bone marrow. Scand J Immunol, 2018, 88(6): e12722.
- 18. Chen J, Sun G, Chen F, et al. T-cell immunoglobulin domain and mucin domain 3 polymorphism affects cytokine expression in different cells and is associated with increased susceptibility to knee osteoarthritis. Gene, 2015, 566(1): 32-36.
- 19. 黃輝, 周揚, 平鍵, 等. Th1/Th2 細胞平衡與纖維增生性疾病的相關性. 臨床肝膽病雜志, 2019, 35(4): 883-886.
- 20. Raphael I, Nalawade S, Eagar TN, et al. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine, 2015, 74(1): 5-17.
- 21. Ren W, Liu G, Chen S, et al. Melatonin signaling in T cells: Functions and applications. J Pineal Res, 2017, 62(3).
- 22. Rosshirt N, Hagmann S, Tripel E, et al. A predominant Th1 polarization is present in synovial fluid of end-stage osteoarthritic knee joints: analysis of peripheral blood, synovial fluid and synovial membrane. Clin Exp Immunol, 2019, 195(3): 395-406.
- 23. Haynes MK, Hume EL, Smith JB. Phenotypic characterization of inflammatory cells from osteoarthritic synovium and synovial fluids. Clin Immunol, 2002, 105(3): 315-325.
- 24. Yamada H, Nakashima Y, Okazaki K, et al. Preferential accumulation of activated Th1 cells not only in rheumatoid arthritis but also in osteoarthritis joints. J Rheumatol, 2011, 38(8): 1569-1575.
- 25. Dolganiuc A, Stavaru C, Anghel M, et al. Shift toward T lymphocytes with Th1 and Tc1 cytokine-secterion profile in the joints of patients with osteoarthritis. Roum Arch Microbiol Immunol, 1999, 58(3-4): 249-258.
- 26. Chen DY, Lan JL, Lin FJ, et al. Predominance of Th1 cytokine in peripheral blood and pathological tissues of patients with active untreated adult onset Stillxs disease. Ann Rheum Dis, 2004, 63(10): 1300-1306.
- 27. Moradi B, Rosshirt N, Hagmann S, et al. Osteoarthritis progression is accompanied by inflammatory CD4+ T-Cell polarisation. Osteoarthritis Cartilage, 2012, 20(Supplement 1): S232-S233.
- 28. Ishii H, Tanaka H, Katoh K, et al. Characterization of infiltrating T cells and Th1/Th2-type cytokines in the synovium of patients with osteoarthritis. Osteoarthritis Cartilage, 2002, 10(4): 277-281.
- 29. Scott JL, Gabrielides C, Davidson RK, et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis, 2010, 69(8): 1502-1510.
- 30. Schlaak JF, Pfers I, Meyer Zum Buschenfelde KH, et al. Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol, 1996, 14(2): 155-162.
- 31. Haseeb A, Haqqi TM. Immunopathogenesis of osteoarthritis. Clin Immunol, 2013, 146(3): 185-196.
- 32. Lotz M, Terkeltaub R, Villiger PM. Cartilage and joint inflammation. Regulation of IL-8 expression by human articular chondrocytes. J Immunol, 1992, 148(2): 466-473.
- 33. Alaaeddine N, Olee T, Hashimoto S, et al. Production of the chemokine RANTES by articular chondrocytes and role in cartilage degradation. Arthritis Rheum, 2001, 44(7): 1633-1643.
- 34. Saklatvala J. Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature, 1986, 322(6079): 547-549.
- 35. Li H, Xie S, Qi Y, et al. TNF-alpha increases the expression of inflammatory factors in synovial fibroblasts by inhibiting the PI3K/AKT pathway in a rat model of monosodium iodoacetate-induced osteoarthritis. Exp Ther Med, 2018, 16(6): 4737-4744.
- 36. Dar HY, Azam Z, Anupam R, et al. Osteoimmunology: The nexus between bone and immune system. Front Biosci (Landmrk Ed), 2018, 23: 464-492.
- 37. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol, 2010, 28: 445-489.
- 38. Hegemann N, Wondimu A, Kohn B, et al. Cytokine profile in canine immune-mediated polyarthritis and osteoarthritis. Vet Comp Orthop Traumatol, 2005, 18(2): 67-72.
- 39. Sakkas LI, Scanzello C, Johanson N, et al. T cells and T-cell cytokine transcripts in the synovial membrane in patients with osteoarthritis. Clin Diagn Lab Immunol, 1998, 5(4): 430-437.
- 40. Angkasekwinai P. Th9 cells in allergic disease. Curr Allergy Asthma Rep, 2019, 19(5): 29.
- 41. Schmitt E, Klein M, Bopp T. Th9 cells, new players in adaptive immunity. Trends Immunol, 2014, 35(2): 61-68.
- 42. Kundu-Raychaudhuri S, Abria C, Raychaudhuri SP. IL-9, a local growth factor for synovial T cells in inflammatory arthritis. Cytokine, 2016, 79: 45-51.
- 43. Qi C, Shan Y, Wang J, et al. Circulating T helper 9 cells and increased serum interleukin-9 levels in patients with knee osteoarthritis. Clin Exp Pharmacol Physiol, 2016, 43(5): 528-534.
- 44. Hou MM, Li YF, He LL, et al. Proportions of Th17 cells and Th17-related cytokines in neuromyelitis optica spectrum disorders patients: A meta-analysis. Int Immunopharmacol, 2019, 75: 105793.
- 45. Shabgah AG, Fattahi E, Shahneh FZ. Interleukin-17 in human inflammatory diseases. Postepy Dermatol Alergol, 2014, 31(4): 256-261.
- 46. Zhan FX, Li J, Fang M, et al. Importance of Th22 cell disequilibrium in immune thrombocytopenic purpura. Med Sci Monitor, 2018, 24: 8767-8772.
- 47. Zhang HR, Jiang ZZ, Zhang LY. Dual effect of T helper cell 17 (Th17) and regulatory T cell (Treg) in liver pathological process: From occurrence to end stage of disease. Int Immunopharmacol, 2019, 69: 50-59.
- 48. Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov, 2012, 11(10): 763-776.
- 49. Zhang L, Li YG, Li YH, et al. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS One, 2012, 7(4): e31000.
- 50. Askari A, Naghizadeh MM, Homayounfar R, et al. Increased serum levels of IL-17A and IL-23 are associated with decreased vitamin D3 and increased pain in osteoarthritis. PLoS One, 2016, 11(11): e0164757.
- 51. 張海森, 白玉明, 劉暢, 等. 血清及滑液白介素-17 水平與膝骨關節炎退變及膝痛程度的相關性研究. 中國醫藥導報, 2016, 13(33): 84-87.
- 52. Wang K, Xu J, Cai J, et al. Serum levels of resistin and interleukin-17 are associated with increased cartilage defects and bone marrow lesions in patients with knee osteoarthritis. Mod Rheumatol, 2017, 27(2): 339-344.
- 53. Chabaud M, Durand JM, Buchs N, et al. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum, 1999, 42(5): 963-970.
- 54. Hussein MR, Fathi NA, El-Din AM, et al. Alterations of the CD4(+), CD8 (+) T cell subsets, interleukins-1beta, IL-10, IL-17, tumor necrosis factor-alpha and soluble intercellular adhesion molecule-1 in rheumatoid arthritis and osteoarthritis: preliminary observations. Pathol Oncol Res, 2008, 14(3): 321-328.
- 55. Sarkar S, Justa S, Brucks M, et al. Interleukin (IL)-17A, F and AF in inflammation: a study in collagen-induced arthritis and rheumatoid arthritis. Clin Exp Immunol, 2014, 177(3): 652-661.
- 56. Monasterio G, Castillo F, Rojas L, et al. Th1/Th17/Th22 immune response and their association with joint pain, imagenological bone loss, RANKL expression and osteoclast activity in temporomandibular joint osteoarthritis: A preliminary report. J Oral Rehabil, 2018, 45(8): 589-597.
- 57. Wang K, Xu J, Cai J, et al. Serum levels of interleukin-17 and adiponectin are associated with infrapatellar fat pad volume and signal intensity alteration in patients with knee osteoarthritis. Arthritis Res Ther, 2016, 18(1): 193.
- 58. Deligne C, Casulli S, Pigenet A, et al. Differential expression of interleukin-17 and interleukin-22 in inflamed and non-inflamed synovium from osteoarthritis patients. Osteoarthritis Cartilage, 2015, 23(11): 1843-4852.
- 59. Van Bezooijen RL, Van Der Wee-Pals L, Papapoulos SE, et al. Interleukin 17 synergises with tumour necrosis factor alpha to induce cartilage destruction in vitro. Ann Rheum Dis, 2002, 61(10): 870-876.
- 60. Liu H, Pope RM. The role of apoptosis in rheumatoid arthritis. Curr Opin Pharmacol, 2003, 3(3): 317-322.
- 61. Malemud CJ, Islam N, Haqqi TM. Pathophysiological mechanisms in osteoarthritis lead to novel therapeutic strategies. Cells Tissues Organs, 2003, 174(1-2): 34-48.
- 62. Miyazaki Y, Nakayamada S, Kubo S, et al. Th22 cells promote osteoclast differentiation via production of IL-22 in rheumatoid arthritis. Front Immunol, 2018, 9: 2901.
- 63. Sanaii A, Shirzad H, Haghighian M, et al. Role of Th22 cells in Helicobacter pylori-related gastritis and peptic ulcer diseases. Mol Biol Rep, 2019, 46(6): 5703-5712.
- 64. Trifari S, Kaplan CD, Tran EH, et al. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol, 2009, 10(8): 864-871.
- 65. Xiao CG, Zhou QL, Li XZ, et al. Losartan and dexamethasone may inhibit chemotaxis to reduce the infiltration of Th22 cells in IgA nephropathy. Int Immunopharmacol, 2017, 42: 203-208.
- 66. Zhang L, Li JM, Liu XG, et al. Elevated Th22 cells correlated with Th17 cells in patients with rheumatoid arthritis. J Clin Immunol, 2011, 31(4): 606-614.
- 67. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol, 2011, 29: 621-663.
- 68. Song H, Liu A, Liu G, et al. T follicular regulatory cells suppress Tfh-mediated B cell help and synergistically increase IL-10-producing B cells in breast carcinoma. Immunol Res, 2019, 67(4-5): 416-423.
- 69. Zhang J, Liu W, Wen B, et al. Circulating CXCR3(+) Tfh cells positively correlate with neutralizing antibody responses in HCV-infected patients. Sci Rep, 2019, 9(1): 10090.
- 70. Shan Y, Qi C, Liu Y, et al. Increased frequency of peripheral blood follicular helper T cells and elevated serum IL-21 levels in patients with knee osteoarthritis. Mol Med Rep, 2017, 15(3): 1095-1102.
- 71. Penatti A, Facciotti F, De Matteis R, et al. Differences in serum and synovial CD4+ T cells and cytokine profiles to stratify patients with inflammatory osteoarthritis and rheumatoid arthritis. Arthritis Res Ther, 2017, 19(1): 103.
- 72. Chu Y, Wang F, Zhou M, et al. A preliminary study on the characterization of follicular helper T (Tfh) cells in rheumatoid arthritis synovium. Acta Histochem, 2014, 116(3): 539-543.
- 73. de Jong H, Berlo SE, Hombrink P, et al. Cartilage proteoglycan aggrecan epitopes induce proinflammatory autoreactive T-cell responses in rheumatoid arthritis and osteoarthritis. Ann Rheum Dis, 2010, 69(1): 255-262.
- 74. 張海森, 白玉明, 劉暢, 等. 關節腔注射富血小板血漿對膝骨關節炎患者關節液及血漿中 IL-17 的影響. 中國修復重建外科雜志, 2017, 31(8): 918-921.
- 75. 蔡松濤, 孫京濤, 魏瑄. 枸杞多糖抑制核因子κB (NF-κB) 通路降低骨關節炎軟骨細胞炎性細胞因子水平. 細胞與分子免疫學雜志, 2018, 34(11): 989-993.
- 76. Ren W, Yin J, Duan J, et al. mTORC1 signaling and IL-17 expression: Defining pathways and possible therapeutic targets. Eur J Immunol, 2016, 46(2): 291-299.
 
        

 
                