| 1. |
Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol, 2016, 12(7): 412-420.
|
| 2. |
Park YB, Ha CW, Rhim JH, et al. Stem cell therapy for articular cartilage repair: review of the entity of cell populations used and the result of the clinical application of each entity. Am J Sports Med, 2018, 46(10): 2540-2552.
|
| 3. |
McGonagle D, Baboolal TG, Jones E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat Rev Rheumatol, 2017, 13(12): 719-730.
|
| 4. |
Zhang R, Ma J, Yao J. Molecular mechanisms of the cartilage-specific microRNA-140 in osteoarthritis. Inflamm Res, 2013, 62(10): 871-877.
|
| 5. |
Miyaki S, Sato T, Inoue A, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev, 2010, 24(11): 1173-1185.
|
| 6. |
陳薊, 雷鳴, 劉弼, 等. MicroRNA 與骨關節炎. 中國矯形外科雜志, 2017, 25(19): 1783-1787.
|
| 7. |
Mahboudi H, Soleimani M, Enderami SE, et al. Enhanced chondrogenesis differentiation of human induced pluripotent stem cells by MicroRNA-140 and transforming growth factor beta 3 (TGFβ3). Biologicals, 2018, 52: 30-36.
|
| 8. |
Chen D, Shen J, Zhao W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res, 2017, 5: 16044.
|
| 9. |
Lee WY, Wang B. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. J Orthop Translat, 2017, 9: 76-88.
|
| 10. |
Li CY, Wu XY, Tong JB, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther, 2015, 6: 55.
|
| 11. |
符培亮, 叢銳軍, 陳松, 等. 滑膜間充質干細胞成纖維軟骨分化條件初步探索. 中國修復重建外科雜志, 2015, 29(1): 81-91.
|
| 12. |
張金麗, 劉志河, 湯文彬, 等. 大鼠脂肪來源干細胞對紫外線造成的軟骨細胞 DNA 損傷的修復作用研究. 中國修復重建外科雜志, 2017, 31(5): 600-606.
|
| 13. |
Confalonieri D, Schwab A, Walles H, et al. Advanced therapy medicinal products: a guide for bone marrow-derived MSC application in bone and cartilage tissue engineering. Tissue Eng Part B Rev, 2018, 24(2): 155-169.
|
| 14. |
Goldberg A, Mitchell K, Soans J, et al. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res, 2017, 12(1): 39.
|
| 15. |
Barbero A, Ploegert S, Heberer M, et al. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis Rheum, 2003, 48(5): 1315-1325.
|
| 16. |
Mantripragada VP, Bova WA, Boehm C, et al. Progenitor cells from different zones of human cartilage and their correlation with histopathological osteoarthritis progression. J Orthop Res, 2018, 38(6): 1728-1738.
|
| 17. |
周建新, 楊曉斐, 李陽, 等. 軟骨前體細胞的分離鑒定及 IL-1β 對其成軟骨分化的影響. 中國修復重建外科雜志, 2015, 29(7): 863-869.
|
| 18. |
Jiang Y, Cai Y, Zhang W, et al. Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cells Transl Med, 2016, 5(6): 733-744.
|
| 19. |
Galipeau J, Krampera M, Barrett J, et al. International society for cellular therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 2016, 18(2): 151-159.
|
| 20. |
Pretzel D, Linss S, Rochler S, et al. Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage. Arthritis Res Ther, 2011, 13(2): R64.
|
| 21. |
Alsalameh S, Amin R, Gemba T, et al. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum, 2004, 50(5): 1522-1532.
|
| 22. |
Mazor M, Cesaro A, Ali M, et al. Progenitor cells from cartilage: grade specific differences in stem cell marker expression. Int J Mol Sci, 2017, 18(8): E1759.
|
| 23. |
Xia Z, Ma P, Wu N, et al. Altered function in cartilage derived mesenchymal stem cell leads to OA-related cartilage erosion. Am J Transl Res, 2016, 8(2): 433-446.
|
| 24. |
Seol D, McCabe DJ, Choe H, et al. Chondrogenic progenitor cells respond to cartilage injury. Arthritis Rheum, 2012, 64(11): 3626-3637.
|
| 25. |
McCarthy HE, Bara JJ, Brakspear K, et al. The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse. Vet J, 2012, 192(3): 345-351.
|
| 26. |
Tao T, Li Y, Gui C, et al. Fibronectin enhances cartilage repair by activating progenitor cells through integrin α5β1 receptor. Int J Mol Sci, 2018, 24(13-14): 1112-1124.
|
| 27. |
Borakati A, Mafi R, Mafi P, et al. A systematic review and meta-analysis of clinical trials of mesenchymal stem cell therapy for cartilage repair. Curr Stem Cell Res Ther, 2018, 13(3): 215-225.
|
| 28. |
Kumar H, Ha DH, Lee EJ, et al. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. Stem Cell Res Ther, 2017, 8(1): 262.
|
| 29. |
Al-Najar M, Khalil H, Al-Ajlouni J, et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: a phase Ⅰ/Ⅱ study. J Orthop Surg Res, 2017, 12(1): 190.
|
| 30. |
Togo T, Utani A, Naitoh M, et al. Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Lab Invest, 2006, 86(5): 445-457.
|
| 31. |
Takebe T, Kobayashi S, Kan H, et al. Human elastic cartilage engineering from cartilage progenitor cells using rotating wall vessel bioreactor. Transplant Proc, 2012, 44(4): 1158-1161.
|
| 32. |
Nugent M. MicroRNAs: exploring new horizons in osteoarthritis. Osteoarthritis Cartilage, 2016, 24(4): 573-580.
|
| 33. |
冀全博, 徐亞夢, 王巖. miRNA 與骨關節炎軟骨基質降解的研究進展. 中國修復重建外科雜志, 2016, 30(11): 1431-1436.
|
| 34. |
Araldi E, Schipani E. MicroRNA-140 and the silencing of osteoarthritis. Genes Dev, 2010, 24(11): 1075-1080.
|
| 35. |
Miyaki S, Nakasa T, Otsuki S, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum, 2009, 60(9): 2723-2730.
|
| 36. |
Swingler TE, Wheeler G, Carmont V, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum, 2012, 64(6): 1909-1919.
|
| 37. |
張明, 劉立宏, 肖濤, 等. 實時熒光定量 PCR 檢測骨性關節病人膝關節液中 miR-140 的表達. 中南大學學報 (醫學版), 2012, 37(12): 1210-1214.
|
| 38. |
Si HB, Zeng Y, Liu SY, et al. Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoarthritis Cartilage, 2017, 25(10): 1698-1707.
|
| 39. |
Si H, Zeng Y, Zhou Z, et al. Expression of miRNA-140 in chondrocytes and synovial fluid of knee joints in patients with osteoarthritis. Chin Med Sci J, 2016, 31(4): 207-212.
|
| 40. |
Papaioannou G, Mirzamohammadi F, Lisse TS, et al. MicroRNA-140 provides robustness to the regulation of hypertrophic chondrocyte differentiation by the PTHrP-HDAC4 pathway. J Bone Miner Res, 2015, 30(6): 1044-1052.
|
| 41. |
張洋洋, 彭效祥, 宋偉, 等. 核定位信號肽偶聯核激酶底物短肽修飾殼聚糖介導微小 RNA-140 對兔關節軟骨細胞作用的研究. 中國修復重建外科雜志, 2017, 31(10): 1256-1261.
|
| 42. |
Hossein M, Masoud S, Hana HA, et al. New approach for differentiation of bone marrow mesenchymal stem cells toward chondrocyte cells with overexpression of microRNA-140. ASAIO J, 2018, 64(5): 662-672.
|
| 43. |
Cao Z, Liu C, Bai Y, et al. Inhibitory effect of dihydroartemisinin on chondrogenic and hypertrophic differentiation of mesenchymal stem cells. Am J Transl Res, 2017, 9(6): 2748-2759.
|
| 44. |
Grogan SP, Miyaki S, Asahara H, et al. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther, 2009, 11(3): R85.
|
| 45. |
Li F, Shi W, Wan Y, et al. Prediction of target genes for miR-140-5p in pulmonary arterial hypertension using bioinformatics methods. FEBS Open Bio, 2017, 7(12): 1880-1890.
|
| 46. |
Khayrullin A, Smith L, Mistry D, et al. Chronic alcohol exposure induces muscle atrophy (myopathy) in zebrafish and alters the expression of microRNAs targeting the Notch pathway in skeletal muscle. Biochem Biophys Res Commun, 2016, 479(3): 590-595.
|
| 47. |
楊體敏, 斯海波, 吳元剛, 等. 收肌管神經阻滯聯合環氧合酶 2 選擇性抑制劑在人工全膝關節置換術后的序貫應用及療效. 中國修復重建外科雜志, 2016, 30(9): 1065-1071.
|
| 48. |
Si HB, Zeng Y, Shen B, et al. The influence of body mass index on the outcomes of primary total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2015, 23(6): 1824-1832.
|
| 49. |
Blasioli DJ, Kaplan DL. The roles of catabolic factors in the development of osteoarthritis. Tissue Eng Part B Rev, 2014, 20(4): 355-363.
|
| 50. |
Liang ZJ, Zhuang H, Wang GX, et al. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1beta-stimulated human articular chondrocyte C28/I2 cells. Inflamm Res, 2012, 61(5): 503-509.
|
| 51. |
Mackie EJ, Ahmed YA, Tatarczuch L, et al. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol, 2008, 40(1): 46-62.
|
| 52. |
Orfanidou T, Iliopoulos D, Malizos KN, et al. Involvement of SOX-9 and FGF-23 in RUNX-2 regulation in osteoarthritic chondrocytes. J Cell Mol Med, 2009, 13(9b): 3186-3194.
|
| 53. |
Chen CG, Thuillier D, Chin EN, et al. Chondrocyte-intrinsic Smad3 represses Runx2-inducible matrix metalloproteinase 13 expression to maintain articular cartilage and prevent osteoarthritis. Arthritis Rheum, 2012, 64(10): 3278-3289.
|
| 54. |
Javed A, Afzal F, Bae JS, et al. Specific residues of RUNX2 are obligatory for formation of BMP2-induced RUNX2-SMAD complex to promote osteoblast differentiation. Cells Tissues Organs, 2009, 189(1-4): 133-137.
|
| 55. |
Finnson KW, Chi Y, Bou-Gharios G, et al. TGF-b signaling in cartilage homeostasis and osteoarthritis. Front Biosci (Schol Ed), 2012, 4: 251-268.
|
| 56. |
Varshney A, Panda JJ, Singh AK, et al. Targeted delivery of microRNA-199a-3p using self-assembled dipeptide nanoparticles efficiently reduces hepatocellular carcinoma in mice. Hepatology, 2018, 67(4): 1392-1407.
|
| 57. |
Kawanishi Y, Nakasa T, Shoji T, et al. Intra-articular injection of synthetic microRNA-210 accelerates avascular meniscal healing in rat medial meniscal injured model. Arthritis Res Ther, 2014, 16(6): 488.
|
| 58. |
Bottini M, Bhattacharya K, Fadeel B, et al. Nanodrugs to target articular cartilage: an emerging platform for osteoarthritis therapy. Nanomedicine, 2016, 12(2): 255-268.
|
| 59. |
Maudens P, Meyer S, Seemayer CA, et al. Self-assembled thermoresponsive nanostructures of hyaluronic acid conjugates for osteoarthritis therapy. Nanoscale, 2018, 10(4): 1845-1854.
|
| 60. |
黃勇, 豐干鈞, 劉立岷, 等. 椎間盤退變中微小 RNA 及其非病毒載體的研究進展. 中國修復重建外科雜志, 2017, 31(1): 116-121.
|
| 61. |
Peng JS, Chen SY, Wu CL, et al. Amelioration of experimental autoimmune arthritis through targeting of synovial fibroblasts by intraarticular delivery of microRNAs 140-3p and 140-5p. Arthritis Rheumatol, 2016, 68(2): 370-381.
|
| 62. |
Li R, Xu J, Wong DSH, et al. Self-assembled N-cadherin mimetic peptide hydrogels promote the chondrogenesis of mesenchymal stem cells through inhibition of canonical Wnt/beta-catenin signaling. Biomaterials, 2017, 145: 33-43.
|
| 63. |
Bajpayee AG, Grodzinsky AJ. Cartilage-targeting drug delivery: can electrostatic interactions help? Nat Rev Rheumatol, 2017, 13(3): 183-193.
|
| 64. |
Xiao X, Wang X, Wang Y, et al. Multi-functional peptide-microRNA nanocomplex for targeted microRNA delivery and function imaging. Chemistry, 2018, 24(9): 2277-2285.
|