| 1. |
王書杰. 3D 打印納米羥基磷灰石支架聯合葉黃素在骨缺損修復中的應用研究. 南京: 南京農業大學, 2022.
|
| 2. |
張葆鑫. 3D 打印多孔鋅支架聯合生物活性血清外泌體在兔橈骨骨缺損修復中的研究. 蘇州: 蘇州大學, 2024.
|
| 3. |
劉嗣聰, 劉宏治, 殷亞然. 生物可降解聚酯/生物陶瓷 3D 打印骨組織工程支架研究進展. 復合材料學報, 2024, 41(4): 1672-1693.
|
| 4. |
劉天, 王臻, 儲彬, 等. 人工軟骨支架材料、結構設計與制備技術研究進展. 功能材料, 2023, 54(3): 3001-3011.
|
| 5. |
汪雪穎, 許建霞, 李巖. 3D 打印多孔鉭表面改性及功能化研究進展. 表面技術, 2023, 52(7): 1-10, 54.
|
| 6. |
王樹棋, 王亞明, 鄒永純, 等. 微弧氧化涂層微納米孔調控及功能化應用研究進展. 表面技術, 2021, 50(6): 1-22.
|
| 7. |
Zhang Y, Sun N, Zhu M, et al. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis. Biomater Adv, 2022, 133: 112651.
|
| 8. |
Mukasheva F, Adilova L, Dyussenbinov A, et al. Optimizing scaffold pore size for tissue engineering: insights across various tissue types. Front Bioeng Biotechnol, 2024, 12: 1444986.
|
| 9. |
鄧富元. 3D 打印不同幾何形狀孔隙的鈦合金支架對骨長入影響研究. 瀘州: 西南醫科大學, 2021.
|
| 10. |
王永成. 3D 打印多孔鈦內植物的制備及其骨長入性能評估. 呼和浩特: 內蒙古自治區人民醫院, 2019.
|
| 11. |
魯斌. 3D 打印多孔鈦合金支架孔隙結構對骨長入效果影響的動物實驗研究. 衡陽: 南華大學, 2020.
|
| 12. |
鄧威, 鄭欣, 諶業帥, 等. 3D 打印多孔鈦材料修復兔股骨髁骨缺損的實驗研究. 實驗動物與比較醫學, 2017, 37(4): 266-272.
|
| 13. |
Luo K, Wang L, Chen X, et al. Biomimetic polyurethane 3D scaffolds based on polytetrahydrofuran glycol and polyethylene glycol for soft tissue engineering. Polymers (Basel), 2020, 12(11): 2631.
|
| 14. |
武琦, 李小康, 湯臻, 等. 3D 打印干骺端骨修復支架的生物力學優化設計. 醫用生物力學, 2025, 40(2): 477-484.
|
| 15. |
何遠懷. 羥基磷灰石/Ti-13Nb-13Zr 生物材料的制備和性能研究. 昆明: 昆明理工大學, 2018.
|
| 16. |
Arifin A, Sulong AB, Muhamad N, et al. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review. Mater Design, 2014, 55: 165-175.
|
| 17. |
甄承棟. TPMS 多孔梯度支架的設計及其性能研究. 濟南: 齊魯工業大學, 2025.
|
| 18. |
Brett E, Flacco J, Blackshear C, et al. Biomimetics of bone implants: the regenerative road. Biores Open Access, 2017, 6(1): 1-6.
|
| 19. |
Magré J, Willemsen K, Kolken HMA, et al. Deformable titanium for acetabular revision surgery: a proof of concept. 3D Print Med, 2023, 9(1): 16.
|
| 20. |
Jarolimova P, Voltrova B, Blahnova V, et al. Mesenchymal stem cell interaction with Ti6Al4V alloy pre-exposed to simulated body fluid. RSC Adv, 2020, 10(12): 6858-6872.
|
| 21. |
Lee UL, Yun S, Lee H, et al. Osseointegration of 3D-printed titanium implants with surface and structure modifications. Dent Mater, 2022, 38(10): 1648-1660.
|
| 22. |
Zhang J, Jiang Y, Shang Z, et al. Biodegradable metals for bone defect repair: a systematic review and meta-analysis based on animal studies. Bioact Mater, 2021, 6(11): 4027-4052.
|
| 23. |
Ni R, Jing Z, Xiong C, et al. Effect of micro-arc oxidation surface modification of 3D-printed porous titanium alloys on biological properties. Ann Transl Med, 2022, 10(12): 710.
|
| 24. |
Ma XY, Ma TC, Feng YF, et al. Promotion of osteointegration under diabetic conditions by a silk fibroin coating on 3D-printed porous titanium implants via a ROS-mediated NF-κB pathway. Biomed Mater, 2021, 16(3): 035008.
|
| 25. |
Wang W, Xiong Y, Zhao R, et al. A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation. J Nanobiotechnology, 2022, 20(1): 68.
|
| 26. |
Yang S, Jiang W, Ma X, et al. Nanoscale morphologies on the surface of 3D-printed titanium implants for improved osseointegration: a systematic review of the literature. Int J Nanomedicine, 2023, 18: 4171-4191.
|
| 27. |
Jang HJ, Kang MS, Jang J, et al. Harnessing 3D printed highly porous Ti-6Al-4V scaffolds coated with graphene oxide to promote osteogenesis. Biomater Sci, 2024, 12(21): 5491-5503.
|
| 28. |
Cheng XQ, Xu W, Shao LH, et al. Enhanced osseointegration and antimicrobial properties of 3D-printed porous titanium alloys with copper-strontium doped calcium silicate coatings. J Biomater Appl, 2025, 39(6): 607-619.
|
| 29. |
Wu HY, Lin YH, Lee AK, et al. Combined effects of polydopamine-assisted copper immobilization on 3D-printed porous Ti6Al4V scaffold for angiogenic and osteogenic bone regeneration. Cells, 2022, 11(18): 2824.
|
| 30. |
Li Y, Li L, Ma Y, et al. 3D-printed titanium cage with PVA-vancomycin coating prevents surgical site infections (SSIs). Macromol Biosci, 2020, 20(3): e1900394.
|
| 31. |
Lee S, Park H, Yun HS, et al. Alginate beads encapsulating hydroxyapatite microparticle and BMP-2 for long bone defect regeneration: a pilot study. In Vivo, 2025, 39(2): 732-741.
|
| 32. |
Jiang H, Zhang M, Qu Y, et al. Therapeutic potential of nano-sustained-release factors for bone scaffolds. J Funct Biomater, 2025, 16(4): 136.
|
| 33. |
Jing Z, Yuan W, Wang J, et al. Erratum: simvastatin/hydrogel-loaded 3D-printed titanium alloy scaffolds suppress osteosarcoma via TF/NOX2-associated ferroptosis while repairing bone defects. Bioact Mater, 2024, 34: 463-465.
|
| 34. |
Li S, Cui Y, Liu H, et al. Dual-functional 3D-printed porous bioactive scaffold enhanced bone repair by promoting osteogenesis and angiogenesis. Mater Today Bio, 2024, 24: 100943.
|
| 35. |
吳子健, 胡昭端, 謝有瓊, 等. 3D 打印技術與骨組織工程研究文獻計量及研究熱點可視化分析. 中國組織工程研究, 2021, 25(4): 564-569.
|
| 36. |
付君, 倪明, 陳繼營, 等. 個性化 3D 打印多孔鈦合金加強塊重建重度髖臼骨缺損的早期臨床療效研究. 中華骨與關節外科雜志, 2018, 11(6): 401-407.
|
| 37. |
付君. 個性化 3D 打印多孔鈦合金加強塊重建重度髖臼骨缺損的應用基礎及早期臨床療效研究. 北京: 中國人民解放軍醫學院, 2018.
|
| 38. |
Chen Z, Xing Y, Li X, et al. 3D-printed titanium porous prosthesis combined with the Masquelet technique for the management of large femoral bone defect caused by osteomyelitis. BMC Musculoskelet Disord, 2024, 25(1): 474.
|
| 39. |
Pu Y, Lin X, Zhi Q, et al. Microporous implants modified by bifunctional hydrogel with antibacterial and osteogenic properties promote bone integration in infected bone defects. J Funct Biomater, 2023, 14(4): 226.
|
| 40. |
Hunt JP, Begley MR, Block JE. Truss implant technologyTM for interbody fusion in spinal degenerative disorders: profile of advanced structural design, mechanobiologic and performance characteristics. Expert Rev Med Devices, 2021, 18(8): 707-715.
|
| 41. |
Geng X, Li Y, Li F, et al. A new 3D printing porous trabecular titanium metal acetabular cup for primary total hip arthroplasty: a minimum 2-year follow-up of 92 consecutive patients. J Orthop Surg Res, 2020, 15(1): 383.
|
| 42. |
張彥超, 李建軍, 侯文韜, 等. 3D 打印多孔鈦鋼板一體化植入體修復髖臼后壁粉碎性骨折合并骨缺損的初步研究. 中國骨傷, 2019, 32(5): 469-474.
|
| 43. |
Berlinberg EJ, Kavian JA, Roof MA, et al. Minimum 2-year outcomes of a novel 3D-printed fully porous titanium acetabular shell in revision total hip arthroplasty. Arthroplast Today, 2022, 18: 39-44.
|
| 44. |
Wei X, Fan B, Chen X, et al. DAPT inhibits titanium particle-induced osteolysis by suppressing the RANKL/Notch2 signaling pathway. J Biomed Mater Res A, 2020, 108(11): 2150-2161.
|
| 45. |
He J, Xie M, Luo S, et al. Advanced dynamic slurry circulation system for precision 3D bioprinting of osteogenic ceramics: enhanced stability, mechanical performance optimization, and in vitro bioactivity validation. ACS Omega, 2025, 10(30): 32895-32906.
|
| 46. |
Wang X, Xin H, Ning X, et al. Strontium-loaded titanium implant with rough surface modulates osseointegration by changing sfrp4 in canonical and noncanonical Wnt signaling pathways. Biomed Mater, 2022, 17(3): 35012.
|
| 47. |
Li D, Tang G, Yao H, et al. Formulation of pH-responsive PEGylated nanoparticles with high drug loading capacity and programmable drug release for enhanced antibacterial activity. Bioact Mater, 2022, 16: 47-56.
|
| 48. |
Razzi F, Fratila-Apachitei LE, Fahy N, et al. Immunomodulation of surface biofunctionalized 3D printed porous titanium implants. Biomed Mater, 2020, 15(3): 035017.
|
| 49. |
Ma L, Zhou J, Wu Q, et al. Multifunctional 3D-printed scaffolds eradiate orthotopic osteosarcoma and promote osteogenesis via microwave thermo-chemotherapy combined with immunotherapy. Biomaterials, 2023, 301: 122236.
|
| 50. |
Li Y, Qiao Y, Ma Y, et al. AI in fungal drug development: opportunities, challenges, and future outlook. Front Cell Infect Microbiol, 2025, 15: 1610743.
|
| 51. |
Li X, Zhou S, Liu X, et al. 3D microstructure reconstruction and characterization of porous materials using a cross-sectional SEM image and deep learning. Heliyon, 2024, 10(20): e39185.
|