1. |
Samarasekera E, Mahammed S, Carlisle S, et al. Pancreatitis: summary of NICE guidance. BMJ, 2018, 362: k3443.
|
2. |
郭嚴, 陳東風, 孫文靜. CT 評估人體脂肪面積與急性高脂血癥性胰腺炎復發的相關性研究. 第三軍醫大學學報, 2019, 41(14): 1370-1373.
|
3. |
王倩倩, 周健, 江志偉, 等. 急性胰腺炎患者中醫體質及證型分布特點研究. 中國中西醫結合雜志, 2021, 41(8): 917-921.
|
4. |
洪日, 陳昫, 范文雯, 等. 基于長桑君脈息法應用大柴胡湯辨治急性胰腺炎經驗. 中華中醫藥雜志, 2022, 37(10): 5783-5786.
|
5. |
周靜, 陸賢燕. 加減大柴胡湯治療急性胰腺炎的臨床療效分析. 現代醫學與健康研究電子雜志, 2023, 7(12): 95-97.
|
6. |
趙越. 大柴胡湯的方證研究. 長春: 長春中醫藥大學, 2022.
|
7. |
胡長順, 沈友虎, 宋明霞, 等. 胡希恕教授臨床應用大柴胡湯經驗. 中國社區醫師, 2021, 37(1): 64-65, 68.
|
8. |
王晨輝, 何兵麗, 胡仕祥. 大柴胡湯治療急性胰腺炎作用機制的研究進展. 中國中醫急癥, 2024, 33(9): 1681-1684.
|
9. |
孟凡翠, 湯立達. 中藥網絡藥理學研究中存在的問題與發展展望. 中草藥, 2020, 51(8): 2232-2237.
|
10. |
Luo C, Huang Q, Yuan X, et al. Abdominal paracentesis drainage attenuates severe acute pancreatitis by enhancing cell apoptosis via PI3K/AKT signaling pathway. Apoptosis, 2020, 25(3/4): 290-303.
|
11. |
Manohar M, Verma AK, Venkateshaiah SU, et al. Pathogenic mechanisms of pancreatitis. World J Gastrointest Pharmacol Ther, 2017, 8(1): 10-25.
|
12. |
Malleo G, Mazzon E, Siriwardena AK, et al. Role of tumor necrosis factor-alpha in acute pancreatitis: from biological basis to clinical evidence. Shock, 2007, 28(2): 130-140.
|
13. |
Zhang XP, Lin Q, Zhou YF. Progress of study on the relationship between mediators of inflammation and apoptosis in acute pancreatitis. Dig Dis Sci, 2007, 52(5): 1199-1205.
|
14. |
Frossard JL, Pastor CM. Experimental acute pancreatitis: new insights into the pathophysiology. Front Biosci, 2002, 7: d275-d287.
|
15. |
苗明三, 王升啟. 現代方劑學—藥理與臨床. 北京: 清華大學出版社, 2004: 510-514.
|
16. |
Liu J, Li X, Yue Y, et al. The inhibitory effect of quercetin on IL-6 production by LPS-stimulated neutrophils. Cell Mol Immunol, 2005, 2(6): 455-460.
|
17. |
Cheng SC, Huang WC, S Pang JH, et al. Quercetin inhibits the production of IL-1β-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-κB signaling pathways. Int J Mol Sci, 2019, 20(12): 2957.
|
18. |
Paniagua-Pérez R, Flores-Mondragón G, Reyes-Legorreta C, et al. Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays. Afr J Tradit Complement Altern Med, 2016, 14(1): 123-130.
|
19. |
Fraile L, Crisci E, Córdoba L, et al. Immunomodulatory properties of beta-sitosterol in pig immune responses. Int Immunopharmacol, 2012, 13(3): 316-321.
|
20. |
Tian CL, Liu X, Chang Y, et al. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S Afr J Bot, 2021, 137: 257-264.
|
21. |
Kadioglu O, Nass J, Saeed ME, et al. Kaempferol is an anti-inflammatory compound with activity towards NF-κB pathway proteins. Anticancer Res, 2015, 35(5): 2645-2650.
|
22. |
Conti P, Caraffa A, Gallenga CE, et al. Powerful anti-inflammatory action of luteolin: Potential increase with IL-38. Biofactors, 2021, 47(2): 165-169.
|
23. |
Wang S, Cao M, Xu S, et al. Luteolin alters macrophage polarization to inhibit inflammation. Inflammation, 2020, 43(1): 95-108.
|
24. |
Chen S, Yang Y, Feng H, et al. Baicalein inhibits interleukin-1β-induced proliferation of human rheumatoid arthritis fibroblast-like synoviocytes. Inflammation, 2014, 37(1): 163-169.
|
25. |
Chen C, Zhang C, Cai L, et al. Baicalin suppresses IL-1β-induced expression of inflammatory cytokines via blocking NF-κB in human osteoarthritis chondrocytes and shows protective effect in mice osteoarthritis models. Int Immunopharmacol, 2017, 52: 218-226.
|
26. |
Chen R, Malagola E, Dietrich M, et al. Akt1 signalling supports acinar proliferation and limits acinar-to-ductal metaplasia formation upon induction of acute pancreatitis. J Pathol, 2020, 250(1): 42-54.
|
27. |
Sung KF, Odinokova IV, Mareninova OA, et al. Prosurvival Bcl-2 proteins stabilize pancreatic mitochondria and protect against necrosis in experimental pancreatitis. Exp Cell Res, 2009, 315(11): 1975-1989.
|
28. |
Choi SB, Bae GS, Jo IJ, et al. Berberine inhibits inflammatory mediators and attenuates acute pancreatitis through deactivation of JNK signaling pathways. Mol Immunol, 2016, 74: 27-38.
|
29. |
Szatmary P, Gukovsky I. The role of cytokines and inflammation in the genesis of experimental pancreatitis. Pancreapedia, 2016.
|
30. |
Sendler M, van den Brandt C, Glaubitz J, et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis. Gastroenterology, 2020, 158(1): 253-269.
|
31. |
Sarker RS, Steiger K. A critical role for Akt1 signaling in acute pancreatitis progression. J Pathol, 2020, 251(1): 1-3.
|
32. |
Ma R, Chen C, Wang Z, et al. Causal relationship between plasma lipidome and four types of pancreatitis: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne), 2024, 5: 1415474.
|
33. |
Liu HS, Pan CE, Liu QG, et al. Effect of NF-kappaB and p38 MAPK in activated monocytes/macrophages on pro-inflammatory cytokines of rats with acute pancreatitis. World J Gastroenterol, 2003, 9(11): 2513-2518.
|
34. |
Bhatia M. Apoptosis of pancreatic acinar cells in acute pancreatitis: is it good or bad?. J Cell Mol Med, 2004, 8(3): 402-409.
|