1. |
Zhu D, Dai H, Zhu H, et al. Identification of frequent acute exacerbations phenotype in COPD patients based on imaging and clinical characteristics. Respir Med, 2023, 209: 107150.
|
2. |
Christenson SA. COPD Phenotyping. Respir Care, 2023, 68(7): 871-880.
|
3. |
Wu JJ, Xu HR, Zhang YX, et al. The characteristics of the frequent exacerbator with chronic bronchitis phenotype and non-exacerbator phenotype in patients with chronic obstructive pulmonary disease: a meta-analysis and system review. BMC Pulm Med, 2020, 20(1): 103.
|
4. |
Whittaker H, Rubino A, Müllerová H, et al. Frequency and severity of exacerbations of COPD associated with future risk of exacerbations and mortality: a UK routine health care data study. Int J Chron Obstruct Pulmon Dis, 2022, 17: 427-437.
|
5. |
Yang H, Wen X, Wu F, et al. Inter-relationships among neutrophilic inflammation, air trapping and future exacerbation in COPD: an analysis of ECOPD study. BMJ Open Respir Res, 2023, 10(1): e001597.
|
6. |
Zheng C, Zhang Y, Zhao Y, et al. Circ-OSBPL2 contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-193a-5p/BRD4 axis. Int J Chron Obstruct Pulmon Dis, 2021, 16: 919-931.
|
7. |
Chen C, Chang X, Zhang S, et al. CircRNA CTNNB1 (circCTNNB1) ameliorates cerebral ischemia/reperfusion injury by sponging miR-96-5p to up-regulate scavenger receptor class B type 1 (SRB1) expression. Bioengineered, 2022, 13(4): 10258-10273.
|
8. |
Qi J, Wang T, Zhang Z, et al. Circ-ctnnb1 regulates neuronal injury in spinal cord injury through the Wnt/beta-catenin signaling pathway. Dev Neurosci, 2022, 44(3): 131-141.
|
9. |
中華醫學會呼吸病學分會慢性阻塞性肺疾病學組. 慢性阻塞性肺疾病診治指南(2013 年修訂版). 中華結核和呼吸雜志, 2013, 36(4): 255-264.
|
10. |
Bhatt SP, Agusti A, Bafadhel M, et al. Phenotypes, etiotypes, and endotypes of exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2023, 208(10): 1026-1041.
|
11. |
Vogelmeier CF, Román-Rodríguez M, Singh D, et al. Goals of COPD treatment: focus on symptoms and exacerbations. Respir Med, 2020, 166: 105938.
|
12. |
Zhao K, Dong R, Yu Y, et al. Cigarette smoke-induced lung inflammation in COPD mediated via CCR1/JAK/STAT /NF-κB pathway. Aging (Albany NY), 2020, 12(10): 9125-9138.
|
13. |
Panek I, Liczek M, Gabryelska A, et al. Inflammasome signalling pathway in the regulation of inflammation - its involvement in the development and exacerbation of asthma and chronic obstructive pulmonary disease. Postepy Dermatol Alergol, 2023, 40(4): 487-495.
|
14. |
冼美蘭, 王賢君, 李純香, 等. 穩定期慢性阻塞性肺疾病頻繁急性加重的影響因素及其與血清 SFRP1、PGRN 水平的相關性. 臨床與病理雜志, 2022, 42(1): 151-158.
|
15. |
馮秀敏, 葛海燕, 戈霞暉, 等. 上海地區三甲醫院頻繁與非頻繁急性加重穩定期 COPD 患者的臨床特征差異及其臨床意義. 國際呼吸雜志, 2020, 40(5): 327-335.
|
16. |
李建英, 劉遠程, 潘楊. 8-異前列腺素 F2α和白細胞介素-17 預測慢性阻塞性肺疾病穩定期患者急性發作的作用. 醫學研究生學報, 2022, 35(8): 863-867.
|
17. |
Cosío BG, Shafiek H, Verdú J, et al. Implementation of an integrated care model for frequent-exacerbator COPD patients: a controlled prospective study. Arch Bronconeumol (Engl Ed), 2021: S0300-2896(21)00050-8.
|