1. |
Duan R, Qu M, Yuan Y, et al. Clinical benefit of rehabilitation training in spinal cord injury: a systematic review and meta-analysis. Spine (Phila Pa 1976), 2021, 46(6): E398-E410.
|
2. |
Cardenas DD, Dalal K. Spinal cord injury rehabilitation. Phys Med Rehabil Clin N Am, 2014, 25(3): xv-xvi.
|
3. |
劉小舟, 賴逸菲, 金子焯, 等. 脊髓損傷研究及治療進展. 江西中醫藥, 2022, 53(11): 65-71.
|
4. |
田祎, 姚東曉, 雷德強. 生物材料結合細胞移植治療脊髓損傷的研究進展. 沈陽醫學院學報, 2023, 25(1): 78-82.
|
5. |
陳宣維. 基因工程及干細胞移植治療脊髓損傷: 9352020Y0051. 2020-06-12.
|
6. |
王艷軍, 鄭建中, 張愛蓮, 等. 我國區域醫療信息化研究領域中研究熱點與主流知識群的分析. 中華醫學科研管理雜志, 2016, 29(2): 144-151.
|
7. |
張傳洋, 郭宇, 龐宇飛, 等. 數智化醫療信息利用與服務模式框架構建. 圖書情報工作, 2023, 67(13): 49-58.
|
8. |
傅蘇穎. 數智化改變醫藥傳統架構 引領技術發展和產業升級. 中國證券報, 2023-09-29(A07).
|
9. |
Zheng Y, Mao YR, Yuan TF, et al. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res, 2020, 15(8): 1437-1450.
|
10. |
楊彬, 陶廣義, 楊順, 等. 人工智能在脊髓神經損傷與修復領域研究熱點的可視化分析. 中國組織工程研究, 2025, 29(4): 761-770.
|
11. |
Kuroda Y, Young M, Shoman H, et al. Advanced rehabilitation technology in orthopaedics-a narrative review. Int Orthop, 2021, 45(8): 1933-1940.
|
12. |
Masengo G, Zhang X, Dong R, et al. Lower limb exoskeleton robot and its cooperative control: a review, trends, and challenges for future research. Front Neurorobot, 2023, 16: 913748.
|
13. |
Y?ld?r?m MA, ?ne? K, G?k?eno?lu G. Early term effects of robotic assisted gait training on ambulation and functional capacity in patients with spinal cord injury. Turk J Med Sci, 2019, 49(3): 838-843.
|
14. |
Donisi L, Cesarelli G, Pisani N, et al. Wearable sensors and artificial intelligence for physical ergonomics: a systematic review of literature. Diagnostics (Basel), 2022, 12(12): 3048.
|
15. |
Vélez-Guerrero MA, Callejas-Cuervo M, Mazzoleni S. Artificial intelligence-based wearable robotic exoskeletons for upper limb rehabilitation: a review. Sensors (Basel), 2021, 21(6): 2146.
|
16. |
Mekki M, Delgado AD, Fry A, et al. Robotic rehabilitation and spinal cord injury: a narrative review. Neurotherapeutics, 2018, 15(3): 604-617.
|
17. |
高峰, 杜良杰, 李建軍. 脊髓損傷患者的下肢功能重建: 智能化康復手段. 中國康復理論與實踐, 2008, 14(9): 845-846.
|
18. |
徐發樹. 截癱助行外骨骼機器人安全性研究. 成都: 電子科技大學, 2022.
|
19. |
Maeshima S, Osawa A, Nishio D, et al. Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report. BMC Neurol, 2011, 11: 116.
|
20. |
Kerdraon J, Previnaire JG, Tucker M, et al. Evaluation of safety and performance of the self balancing walking system Atalante in patients with complete motor spinal cord injury. Spinal Cord Ser Cases, 2021, 7(1): 71.
|
21. |
Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil, 2012, 91(11): 911-921.
|
22. |
Farris R, Quintero H, Withrow TJ, et al. Design and simulation of a joint-coupled orthosis for regulating FES-aided gait. IEEE Int Conf Robot Autom, 2009: 12-17.
|
23. |
Yang W, Zhang J, Zhang S, et al. Lower limb exoskeleton gait planning based on crutch and human-machine foot combined center of pressure. Sensors (Basel), 2020, 20(24): 7216.
|
24. |
Wang H, Yang C, Yang W, et al. A rehabilitation gait for the balance of human and lower extremity exoskeleton system based on the transfer of gravity center. Ind Robot, 2019, 46(3): 150.
|
25. |
Chen Q, Cheng H, Yue C, et al. Dynamic balance gait for walking assistance exoskeleton. Appl Bionics Biomech, 2018, 2018: 7847014.
|
26. |
Veneman JF, Kruidhof R, Hekman EE, et al. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng, 2007, 15(3): 379-386.
|
27. |
Wang S, Wang L, Meijneke C, et al. Design and control of the MINDWALKER exoskeleton. IEEE Trans Neural Syst Rehabil Eng, 2015, 23(2): 277-286.
|
28. |
Louie DR, Eng JJ, Lam T, et al. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. J Neuroeng Rehabil, 2015, 12: 82.
|
29. |
Baunsgaard CB, Nissen UV, Brust AK, et al. Exoskeleton gait training after spinal cord injury: an exploratory study on secondary health conditions. J Rehabil Med, 2018, 50(9): 806-813.
|
30. |
Zariffa J, Kapadia N, Kramer JL, et al. Effect of a robotic rehabilitation device on upper limb function in a sub-acute cervical spinal cord injury population. IEEE Int Conf Rehabil Robot, 2011, 2011: 5975400.
|
31. |
Swank C, Holden A, McDonald L, et al. Foundational ingredients of robotic gait training for people with incomplete spinal cord injury during inpatient rehabilitation (FIRST): a randomized controlled trial protocol. PLoS One, 2022, 17(5): e0267013.
|
32. |
Topini A, Sansom W, Secciani N, et al. Variable admittance control of a hand exoskeleton for virtual reality-based rehabilitation tasks. Front Neurorobot, 2022, 15: 789743.
|
33. |
Shi Y, Dong W, Lin W, et al. Soft wearable robots: development status and technical challenges. Sensors (Basel), 2022, 22(19): 7584.
|
34. |
Samejima S, Khorasani A, Ranganathan V, et al. Brain-computer-spinal interface restores upper limb function after spinal cord injury. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 1233-1242.
|
35. |
龔瑜, 藺俊斌, 郝赤子, 等. 腦機接口在脊髓損傷康復中的應用進展. 中國康復醫學雜志, 2020, 35(6): 744-748.
|
36. |
殷祥志, 趙海波, 唐一杰, 等. 腦-機接口技術在脊髓損傷后運動功能改善中應用的研究進展. 中華創傷雜志, 2023, 39(3): 271-276.
|
37. |
Bockbrader M, Annetta N, Friedenberg D, et al. Clinically significant gains in skillful grasp coordination by an individual with tetraplegia using an implanted brain-computer interface with forearm transcutaneous muscle stimulation. Arch Phys Med Rehabil, 2019, 100(7): 1201-1217.
|
38. |
Davis KC, Meschede-Krasa B, Cajigas I, et al. Design-development of an at-home modular brain-computer interface (BCI) platform in a case study of cervical spinal cord injury. J Neuroeng Rehabil, 2022, 19(1): 53.
|
39. |
Ferrero L, Quiles V, Ortiz M, et al. Assessing user experience with BMI-assisted exoskeleton in patients with spinal cord injury. Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2022: 4064-4067.
|
40. |
Ferrero L, Quiles V, Ortiz M, et al. Brain-computer interface enhanced by virtual reality training for controlling a lower limb exoskeleton. iScience, 2023, 26(5): 106675.
|
41. |
Lobel DA, Lee KH. Brain machine interface and limb reanimation technologies: restoring function after spinal cord injury through development of a bypass system. Mayo Clin Proc, 2014, 89(5): 708-714.
|
42. |
Do AH, Wang PT, King CE, et al. Brain-computer interface controlled robotic gait orthosis. J Neuroeng Rehabil, 2013, 10: 111.
|
43. |
Rajasekaran V, López-Larraz E, Trincado-Alonso F, et al. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals. J Neuroeng Rehabil, 2018, 15(1): 4.
|
44. |
Vu?kovi? A, Wallace L, Allan DB. Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study. J Neurol Phys Ther, 2015, 39(1): 3-14.
|
45. |
Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, 2013, 381(9866): 557-564.
|
46. |
Cajigas I, Vedantam A. Brain-computer interface, neuromodulation, and neurorehabilitation strategies for spinal cord injury. Neurosurg Clin N Am, 2021, 32(3): 407-417.
|
47. |
Pizzolato C, Gunduz MA, Palipana D, et al. Non-invasive approaches to functional recovery after spinal cord injury: therapeutic targets and multimodal device interventions. Exp Neurol, 2021, 339: 113612.
|
48. |
Wagner FB, Mignardot JB, Le Goff-Mignardot CG, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature, 2018, 563(7729): 65-71.
|
49. |
Rowald A, Komi S, Demesmaeker R, et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med, 2022, 28(2): 260-271.
|
50. |
Kathe C, Skinnider MA, Hutson TH, et al. The neurons that restore walking after paralysis. Nature, 2022, 611(7936): 540-547.
|
51. |
Lorach H, Galvez A, Spagnolo V, et al. Walking naturally after spinal cord injury using a brain-spine interface. Nature, 2023, 618(7963): 126-133.
|
52. |
于貝貝, 陸洋, 王勁. 脊髓電刺激重建咳嗽反射的應用進展. 中國微侵襲神經外科雜志, 2021, 26(3): 141-144.
|