| 1. |
孫健平, 張堃, 王鵬飛, 等. 骨折患者近端深靜脈血栓形成臨床特征及危險因素. 中華創傷雜志, 2019, 35(7): 625-630.
|
| 2. |
劉海龍, 王志聰, 陳曦, 等. 老年髖部骨折患者受傷至入院時間與下肢深靜脈血栓形成的關系. 山東醫藥, 2022, 62(17): 69-72.
|
| 3. |
夏芊, 向小容, 謝仟, 等. 機器學習在靜脈血栓栓塞疾病中的研究進展. 四川醫學, 2023, 44(1): 78-81.
|
| 4. |
Schwalbe N, Wahl B. Artificial intelligence and the future of global health. Lancet, 2020, 395(10236): 1579-1586.
|
| 5. |
Matuchansky C. Deep medicine, artificial intelligence, and the practising clinician. Lancet, 2019, 394(10200): 736.
|
| 6. |
Liu H, Yuan H, Wang Y, et al. Prediction of venous thromboembolism with machine learning techniques in young-middle-aged inpatients. Sci Rep, 2021, 11(1): 12868.
|
| 7. |
孫林凱, 金家善, 耿俊豹. 基于修正鄧氏灰色關聯度的設備費用影響因素分析. 數學的實踐與認識, 2012, 42(8): 140-145.
|
| 8. |
袁晨杰, 田侃. 基于灰色關聯度分析法的四川省人均衛生費用影響因素研究. 中國醫療管理科學, 2022, 12(1): 23-28.
|
| 9. |
果爽, 程偉, 劉鑫鑫, 等. 基于 BP 神經網絡的醫療衛生服務質量滿意度研究. 中國醫學物理學雜志, 2023, 40(6): 788-792.
|
| 10. |
Diao S, Li J, Zhao J, et al. Risk factors and new inflammatory indicators of deep vein thrombosis after adult patella fractures. Front Surg, 2022, 9: 1028542.
|
| 11. |
Dou C, Li T, Yang S, et al. Epidemiological status and risk factors of deep vein thrombosis in patients with femoral neck fracture. J Orthop Surg Res, 2022, 17(1): 41.
|
| 12. |
Niu S, Pei Y, Hu X, et al. Relationship between the neutrophil-to-lymphocyte ratio or platelet-to-lymphocyte ratio and deep venous thrombosis (DVT) following femoral neck fractures in the elderly. Front Surg, 2022, 9: 1001432.
|
| 13. |
Melinte RM, Arb?na?i EM, Blesneac A, et al. Inflammatory biomarkers as prognostic factors of acute deep vein thrombosis following the total knee arthroplasty. Medicina (Kaunas), 2022, 58(10): 1502.
|
| 14. |
張巧云, 李音音, 蒙杰, 等. 中性粒細胞相關參數在下肢深靜脈血栓形成的臨床意義. 中國實驗診斷學, 2021, 25(6): 833-836.
|
| 15. |
Wang G, Zhao W, Zhao Z, et al. Leukocyte as an independent predictor of lower-extremity deep venous thrombosis in elderly patients with primary intracerebral hemorrhage. Front Neurol, 2022, 13: 899849.
|
| 16. |
Wang P, Wang Y, Yuan Z, et al. Venous thromboembolism risk assessment of surgical patients in Southwest China using real-world data: establishment and evaluation of an improved venous thromboembolism risk model. BMC Med Inform Decis Mak, 2022, 22(1): 59.
|
| 17. |
徐松, 葉哲偉. 人工智能在骨科的應用現狀及前景. 中國醫刊, 2019, 54(2): 117-119.
|
| 18. |
Xiang YF, Zhao LQ, Liu ZZ, et al. Implementation of artificial intelligence in medicine: status analysis and development suggestions. Artif Intell Med, 2020, 102: 101780.
|
| 19. |
Martins TD, Annichino-Bizzacchi JM, Romano AVC, et al. Artificial neural networks for prediction of recurrent venous thromboembolism. Int J Med Inform, 2020, 141: 104221.
|
| 20. |
高遠, 潘曉英, 李建濤, 等. 人工智能算法模型在創傷患者下肢靜脈血栓栓塞癥診斷中的預測價值. 中華創傷雜志, 2021, 37(10): 932-937.
|
| 21. |
周武, 曹發奇, 曾睿寅, 等. 創傷骨科患者圍術期下肢靜脈血栓形成診斷及防治專家共識(2022 年). 中華創傷雜志, 2022, 38(1): 23-31.
|
| 22. |
王藝燕, 何凌霄, 歐陽朝威, 等. 創傷患者靜脈血栓栓塞癥風險評估工具的研究進展. 軍事護理, 2023, 40(2): 95-97.
|