| 1. | Zobell CE, Allen EC. Attachment of marine bacteria to submerged slides. Proc Soc Exp Biol Med, 1933, 30(9): 1409-1411. | 
				                                                        
				                                                            
				                                                                | 2. | Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am, 1978, 238(1): 86-95. | 
				                                                        
				                                                            
				                                                                | 3. | Bjarnsholt T, Buhlin K, Dufrêne YF,  et al. Biofilm formation - what we can learn from recent developments. J Intern Med, 2018, 284(4): 332-345. | 
				                                                        
				                                                            
				                                                                | 4. | Yin W, Wang Y, Liu L,  et al. Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci, 2019, 20(14): 3423. | 
				                                                        
				                                                            
				                                                                | 5. | Center for Disease Dynamics, Economics & Policy. The state of the world’s antibiotics 2015. Washington, D.C.: CDDEP, 2015. | 
				                                                        
				                                                            
				                                                                | 6. | Carvalho FM, Teixeira-Santos R, Mergulh?o FJM,  et al. The use of probiotics to fight biofilms in medical devices: a systematic review and meta-analysis. Microorganisms, 2020, 9(1): 27. | 
				                                                        
				                                                            
				                                                                | 7. | Sánchez B, Delgado S, Blanco-Míguez A, et al. Probiotics, gut microbiota, and their influence on host health and disease. Mol Nutr Food Res, 2017, 61(1): 1600240. | 
				                                                        
				                                                            
				                                                                | 8. | Wasfi R, Abd El-Rahman OA, Zafer MM,  et al. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing  Streptococcus mutans. J Cell Mol Med, 2018, 22(3): 1972-1983. | 
				                                                        
				                                                            
				                                                                | 9. | James KM, MacDonald KW, Chanyi RM,  et al. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant. J Med Microbiol, 2016, 65(4): 328-336. | 
				                                                        
				                                                            
				                                                                | 10. | Tan Y, Leonhard M, Moser D,  et al. Inhibitory effect of probiotic lactobacilli supernatants on single and mixed non-albicans Candida species biofilm. Arch Oral Biol, 2018, 85: 40-45. | 
				                                                        
				                                                            
				                                                                | 11. | Ramos AN, Cabral ME, Noseda D,  et al. Antipathogenic properties of Lactobacillus plantarum on Pseudomonas aeruginosa: the potential use of its supernatants in the treatment of infected chronic wounds. Wound Repair Regen, 2012, 20(4): 552-562. | 
				                                                        
				                                                            
				                                                                | 12. | Varma P, Nisha N, Dinesh KR,  et al. Anti-infective properties of Lactobacillus fermentum against Staphylococcus aureus and Pseudomonas aeruginosa. J Mol Microbiol Biotechnol, 2011, 20(3): 137-143. | 
				                                                        
				                                                            
				                                                                | 13. | Kaur S, Sharma P, Kalia N,  et al. Anti-biofilm properties of the fecal probiotic lactobacilli against Vibrio spp. Front Cell Infect Microbiol, 2018, 8: 120. | 
				                                                        
				                                                            
				                                                                | 14. | Lau CS, Chamberlain RS. Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med, 2016, 9: 27-37. | 
				                                                        
				                                                            
				                                                                | 15. | Gómez NC, Ramiro JM, Quecan BX,  et al. Use of potential probiotic lactic acid bacteria (lab) biofilms for the control of Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157: H7 biofilms formation. Front Microbiol, 2016, 7: 863. | 
				                                                        
				                                                            
				                                                                | 16. | Chen Q, Zhu Z, Wang J,  et al. Probiotic  E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization. Acta Biomater, 2017, 50: 353-360. | 
				                                                        
				                                                            
				                                                                | 17. | Berríos P, Fuentes JA, Salas D,  et al. Inhibitory effect of biofilm-forming Lactobacillus kunkeei strains against virulent Pseudomonas aeruginosa in vitro and in honeycomb moth (Galleria mellonella) infection model. Benef Microbes, 2018, 9(2): 257-268. | 
				                                                        
				                                                            
				                                                                | 18. | Tan L, Fu J, Feng F,  et al. Engineered probiotics biofilm enhances osseointegration via immunoregulation and anti-infection. Sci Adv, 2020, 6(46): eaba5723. | 
				                                                        
				                                                            
				                                                                | 19. | Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol, 2019, 17(6): 371-382. | 
				                                                        
				                                                            
				                                                                | 20. | Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des, 2015, 21(1): 5-11. | 
				                                                        
				                                                            
				                                                                | 21. | García-Contreras R, Nu?ez-López L, Jasso-Chávez R,  et al. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME J, 2015, 9(1): 115-125. | 
				                                                        
				                                                            
				                                                                | 22. | Bandyopadhyay D, Prashar D, Luk YY. Anti-fouling chemistry of chiral monolayers: enhancing biofilm resistance on racemic surface. Langmuir, 2011, 27(10): 6124-6131. | 
				                                                        
				                                                            
				                                                                | 23. | Styles MJ, Boursier ME, McEwan MA,  et al. Autoinducer-fluorophore conjugates enable FRET in LuxR proteins in vitro and in cells. Nat Chem Biol, 2022, 18(10): 1115-1124. | 
				                                                        
				                                                            
				                                                                | 24. | Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870): 389-395. | 
				                                                        
				                                                            
				                                                                | 25. | Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol, 2012, 132(3 Pt 2): 887-895. | 
				                                                        
				                                                            
				                                                                | 26. | Sierra JM, Fusté E, Rabanal F,  et al. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther, 2017, 17(6): 663-676. | 
				                                                        
				                                                            
				                                                                | 27. | Chung PY, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect, 2017, 50(4): 405-410. | 
				                                                        
				                                                            
				                                                                | 28. | Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol, 2009, 30(3): 131-141. | 
				                                                        
				                                                            
				                                                                | 29. | Zhou Y, Peng Y. Synergistic effect of clinically used antibiotics and peptide antibiotics against Gram-positive and Gram-negative bacteria. Exp Ther Med, 2013, 6(4): 1000-1004. | 
				                                                        
				                                                            
				                                                                | 30. | Bhattacharjya S, Ramamoorthy A. Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. FEBS J, 2009, 276(22): 6465-6473. | 
				                                                        
				                                                            
				                                                                | 31. | Rudilla H, Fusté E, Cajal Y,  et al. Synergistic antipseudomonal effects of synthetic peptide AMP38 and carbapenems. Molecules, 2016, 21(9): 1223. | 
				                                                        
				                                                            
				                                                                | 32. | Pletzer D, Hancock RE. Antibiofilm peptides: potential as broad-spectrum agents. J Bacteriol, 2016, 198(19): 2572-2578. | 
				                                                        
				                                                            
				                                                                | 33. | Rios AC, Moutinho CG, Pinto FC,  et al. Alternatives to overcoming bacterial resistances: state-of-the-art. Microbiol Res, 2016, 191: 51-80. | 
				                                                        
				                                                            
				                                                                | 34. | Eckert R, Qi F, Yarbrough DK,  et al. Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother, 2006, 50(4): 1480-1488. | 
				                                                        
				                                                            
				                                                                | 35. | Bowdish DM, Davidson DJ, Hancock RE. A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci, 2005, 6(1): 35-51. | 
				                                                        
				                                                            
				                                                                | 36. | Cisek AA, D?browska I, Gregorczyk KP,  et al. Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr Microbiol, 2017, 74(2): 277-283. | 
				                                                        
				                                                            
				                                                                | 37. | Kutter EM, Kuhl SJ, Abedon ST. Re-establishing a place for phage therapy in western medicine. Future Microbiol, 2015, 10(5): 685-688. | 
				                                                        
				                                                            
				                                                                | 38. | Morris J, Kelly N, Elliott L,  et al. Evaluation of bacteriophage anti-biofilm activity for potential control of orthopedic implant-related infections caused by Staphylococcus aureus. Surg Infect (Larchmt), 2019, 20(1): 16-24. | 
				                                                        
				                                                            
				                                                                | 39. | Koskella B, Meaden S. Understanding bacteriophage specificity in natural microbial communities. Viruses, 2013, 5(3): 806-823. | 
				                                                        
				                                                            
				                                                                | 40. | McVay CS, Velásquez M, Fralick JA. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother, 2007, 51(6): 1934-1938. | 
				                                                        
				                                                            
				                                                                | 41. | Carmody LA, Gill JJ, Summer EJ,  et al. Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection. J Infect Dis, 2010, 201(2): 264-271. | 
				                                                        
				                                                            
				                                                                | 42. | Debarbieux L, Leduc D, Maura D,  et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis, 2010, 201(7): 1096-1104. | 
				                                                        
				                                                            
				                                                                | 43. | Fu W, Forster T, Mayer O,  et al. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother, 2010, 54(1): 397-404. | 
				                                                        
				                                                            
				                                                                | 44. | Hughes G, Webber MA. Novel approaches to the treatment of bacterial biofilm infections. Br J Pharmacol, 2017, 174(14): 2237-2246. | 
				                                                        
				                                                            
				                                                                | 45. | Halstead FD, Rauf M, Moiemen NS,  et al. The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PLoS One, 2015, 10(9): e0136190. | 
				                                                        
				                                                            
				                                                                | 46. | Nagoba BS, Selkar SP, Wadher BJ,  et al. Acetic acid treatment of pseudomonal wound infections--a review. J Infect Public Health, 2013, 6(6): 410-415. | 
				                                                        
				                                                            
				                                                                | 47. | Bjarnsholt T, Alhede M, Jensen P?,  et al. Antibiofilm properties of acetic acid. Adv Wound Care (New Rochelle), 2015, 4(7): 363-372. | 
				                                                        
				                                                            
				                                                                | 48. | Sloss JM, Cumberland N, Milner SM. Acetic acid used for the elimination of Pseudomonas aeruginosa from burn and soft tissue wounds. J R Army Med Corps, 1993, 139(2): 49-51. | 
				                                                        
				                                                            
				                                                                | 49. | Percival SL, Suleman L, Francolini I,  et al. The effectiveness of photodynamic therapy on planktonic cells and biofilms and its role in wound healing. Future Microbiol, 2014, 9(9): 1083-1094. | 
				                                                        
				                                                            
				                                                                | 50. | Huang L, Wang M, Dai T,  et al. Antimicrobial photodynamic therapy with decacationic monoadducts and bisadducts of [70]fullerene: in vitro and in vivo studies. Nanomedicine (Lond), 2014, 9(2): 253-266. | 
				                                                        
				                                                            
				                                                                | 51. | Rosa LP, da Silva FC, Nader SA,  et al. Antimicrobial photodynamic inactivation of Staphylococcus aureus biofilms in bone specimens using methylene blue, toluidine blue ortho and malachite green: An in vitro study. Arch Oral Biol, 2015, 60(5): 675-680. | 
				                                                        
				                                                            
				                                                                | 52. | Mai B, Wang X, Liu Q,  et al. The antibacterial effect of sinoporphyrin sodium photodynamic therapy on Staphylococcus aureus planktonic and biofilm cultures. Lasers Surg Med, 2016, 48(4): 400-408. | 
				                                                        
				                                                            
				                                                                | 53. | Zhang QZ, Zhao KQ, Wu Y,  et al. 5-aminolevulinic acid-mediated photodynamic therapy and its strain-dependent combined effect with antibiotics on  Staphylococcus aureus biofilm. PLoS One, 2017, 12(3): e0174627. | 
				                                                        
				                                                            
				                                                                | 54. | Bak J, Ladefoged SD, Tvede M,  et al. Dose requirements for UVC disinfection of catheter biofilms. Biofouling, 2009, 25(4): 289-296. | 
				                                                        
				                                                            
				                                                                | 55. | Dai T, Kharkwal GB, Zhao J,  et al. Ultraviolet-C light for treatment of Candida albicans burn infection in mice. Photochem Photobiol, 2011, 87(2): 342-349. | 
				                                                        
				                                                            
				                                                                | 56. | Dai T, Garcia B, Murray CK,  et al. UVC light prophylaxis for cutaneous wound infections in mice. Antimicrob Agents Chemother, 2012, 56(7): 3841-3848. | 
				                                                        
				                                                            
				                                                                | 57. | Suresh MK, Biswas R, Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int J Med Microbiol, 2019, 309(1): 1-12. | 
				                                                        
				                                                            
				                                                                | 58. | Shepherd J. Best served small: nano battles in the war against wound biofilm infections. Emerg Top Life Sci, 2020, 4(6): 567-580. | 
				                                                        
				                                                            
				                                                                | 59. | Mauro N, Fiorica C, Giuffrè M,  et al. A self-sterilizing fluorescent nanocomposite as versatile material with broad-spectrum antibiofilm features. Mater Sci Eng C Mater Biol Appl, 2020, 117: 111308. | 
				                                                        
				                                                            
				                                                                | 60. | Brachner A, Fragouli D, Duarte IF,  et al. Assessment of human health risks posed by nano-and microplastics is currently not feasible. Int J Environ Res Public Health, 2020, 17(23): 8832. | 
				                                                        
				                                                            
				                                                                | 61. | Lorenzetti M, Dog?a I, Sto?icki T,  et al. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl Mater Interfaces, 2015, 7(3): 1644-1651. | 
				                                                        
				                                                            
				                                                                | 62. | Khalid S, Gao A, Wang G,  et al. Tuning surface topographies on biomaterials to control bacterial infection. Biomater Sci, 2020, 8(24): 6840-6857. |