| 1. | Ridgeway S, Wilson J, Charlet A, et al. Infection of the surgical site after arthroplasty of the hip. J Bone Joint Surg Br, 2005, 87(6): 844-850. | 
				                                                        
				                                                            
				                                                                | 2. | Olsen MA, Nepple JJ, Riew KD, et al. Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Joint Surg Am, 2008, 90(1): 62-69. | 
				                                                        
				                                                            
				                                                                | 3. | Mahan J, Seligson D, Henry SL, et al. Factors in pin tract infections. Orthopedics, 1991, 14(3): 305-308. | 
				                                                        
				                                                            
				                                                                | 4. | Lee-Smith J, Santy J, Davis P, et al. Pin site management. Towards a consensus: part 1. J Orthop Nurs, 2001, 5(1): 37-42. | 
				                                                        
				                                                            
				                                                                | 5. | Zimmerli W, Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol, 2012, 65(2): 158-168. | 
				                                                        
				                                                            
				                                                                | 6. | Nohr RS, Macdonald JG. New biomaterials through surface segregation phenomenon: new quaternary ammonium compounds as antibacterial agents. J Biomater Sci Polym Ed, 1994, 5(6): 607-619. | 
				                                                        
				                                                            
				                                                                | 7. | Nganga S, Travan A, Marsich E, et al. In vitro antimicrobial properties of silver-polysaccharide coatings on porous fiber-reinforced composites for bone implants. J Mater Sci Mater Med, 2013, 24(12): 2775-2785. | 
				                                                        
				                                                            
				                                                                | 8. | Tyagi M, Singh H. Preparation and antibacterial evaluation of urinary balloon catheter. Biomed Sci Instrum, 1997, 33: 240-245. | 
				                                                        
				                                                            
				                                                                | 9. | Akiyama T, Miyamoto H, Yonekura Y, et al. Silver oxide-containing hydroxyapatite coating has in vivo antibacterial activity in the rat tibia. J Orthop Res, 2013, 31(8): 1195-1200. | 
				                                                        
				                                                            
				                                                                | 10. | An YH, Stuart GW, McDowell SJ, et al. Prevention of bacterial adherence to implant surfaces with a crosslinked albumin coating in vitro. J Orthop Res, 1996, 14(5): 846-849. | 
				                                                        
				                                                            
				                                                                | 11. | Kelkawi AHA, Abbasi Kajani A, Bordbar AK. Green synthesis of silver nanoparticles using Mentha pulegium and investigation of their antibacterial, antifungal and anticancer activity. IET Nanobiotechnol, 2017, 11(4): 370-376. | 
				                                                        
				                                                            
				                                                                | 12. | Li Y, Lin Z, Zhao M, et al. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl Mater Interfaces, 2016, 8(37): 24385-24393. | 
				                                                        
				                                                            
				                                                                | 13. | Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 7th ed. CLSI document M7-A7. Wayne, PA: Clinical and Laboratory Standards Institute, 2006. | 
				                                                        
				                                                            
				                                                                | 14. | Brennan SA, Ní Fhoghlú C, Devitt BM, et al. Silver nanoparticles and their orthopaedic applications. Bone Joint J, 2015, 97-B(5): 582-589. | 
				                                                        
				                                                            
				                                                                | 15. | Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol, 2010, 28(11): 580-588. | 
				                                                        
				                                                            
				                                                                | 16. | Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine, 2020, 15: 2555-2562. | 
				                                                        
				                                                            
				                                                                | 17. | Xiang Y, Li J, Liu X, et al. Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility. Mater Sci Eng C Mater Biol Appl, 2017, 79: 629-637. | 
				                                                        
				                                                            
				                                                                | 18. | Sato M, Webster TJ. Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Expert Rev Med Devices, 2004, 1(1): 105-114. | 
				                                                        
				                                                            
				                                                                | 19. | Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol, 2009, 86(3): 215-223. | 
				                                                        
				                                                            
				                                                                | 20. | Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev, 2003, 55(3): 329-347. | 
				                                                        
				                                                            
				                                                                | 21. | Rodríguez-León E, I?iguez-Palomares R, Navarro RE, et al. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res Lett, 2013, 8(1): 318. | 
				                                                        
				                                                            
				                                                                | 22. | Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog, 2003, 19(6): 1627-1631. | 
				                                                        
				                                                            
				                                                                | 23. | Mala R, Annie Aglin A, Ruby Celsia AS, et al. Foley catheters functionalised with a synergistic combination of antibiotics and silver nanoparticles resist biofilm formation. IET Nanobiotechnol, 2017, 11(5): 612-620. | 
				                                                        
				                                                            
				                                                                | 24. | Ansari MA, Khan HM, Khan AA, et al. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol, 2015, 33(1): 101-109. | 
				                                                        
				                                                            
				                                                                | 25. | Du J, Singh H, Yi TH. Antibacterial, anti-biofilm and anticancer potentials of green synthesized silver nanoparticles using benzoin gum (Styrax benzoin) extract. Bioprocess Biosyst Eng, 2016, 39(12): 1923-1931. | 
				                                                        
				                                                            
				                                                                | 26. | Qin H, Cao H, Zhao Y, et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials, 2014, 35(33): 9114-9125. | 
				                                                        
				                                                            
				                                                                | 27. | Long M, Rack HJ. Titanium alloys in total joint replacement--a materials science perspective. Biomaterials, 1998, 19(18): 1621-1639. | 
				                                                        
				                                                            
				                                                                | 28. | Arens S, Schlegel U, Printzen G, et al. Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br, 1996, 78(4): 647-651. | 
				                                                        
				                                                            
				                                                                | 29. | Ha KY, Chung YG, Ryoo SJ. Adherence and biofilm formation of Staphylococcus epidermidis and Mycobacterium tuberculosis on various spinal implants. Spine (Phila Pa 1976), 2005, 30(1): 38-43. | 
				                                                        
				                                                            
				                                                                | 30. | Schildhauer TA, Robie B, Muhr G, et al. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials. J Orthop Trauma, 2006, 20(7): 476-484. | 
				                                                        
				                                                            
				                                                                | 31. | Malhotra R, Dhawan B, Garg B, et al. A comparison of bacterial adhesion and biofilm formation on commonly used orthopaedic metal implant materials: an in vitro study. Indian J Orthop, 2019, 53(1): 148-153. | 
				                                                        
				                                                            
				                                                                | 32. | Pedeferri M. Titanium anodic oxidation: a powerful technique for tailoring surfaces properties for biomedical applications//TMS 2015 144th Annual Meeting & Exhibition. Cham: Springer International Publishing, 2016. | 
				                                                        
				                                                            
				                                                                | 33. | Sharma VK, Sayes CM, Guo B, et al. Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: a review. Sci Total Environ, 2019, 653: 1042-1051. | 
				                                                        
				                                                            
				                                                                | 34. | Guggenbichler JP, B?swald M, Lugauer S, et al. A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection, 1999, 27(Suppl 1): S16-S23. | 
				                                                        
				                                                            
				                                                                | 35. | R?sch W, Lugauer S. Catheter-associated infections in urology: possible use of silver-impregnated catheters and the Erlanger silver catheter. Infection, 1999, 27(Suppl 1): S74-S77. | 
				                                                        
				                                                            
				                                                                | 36. | Chole RA, Hubbell RN. Antimicrobial activity of silastic tympanostomy tubes impregnated with silver oxide. A double-blind randomized multicenter trial. Arch Otolaryngol Head Neck Surg, 1995, 121(5): 562-565. | 
				                                                        
				                                                            
				                                                                | 37. | Paná?ek A, Smékalová M, Ve?e?ová R, et al. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf B Biointerfaces, 2016, 142: 392-399. | 
				                                                        
				                                                            
				                                                                | 38. | Dos Santos CA, Seckler MM, Ingle AP, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci, 2014, 103(7): 1931-1944. | 
				                                                        
				                                                            
				                                                                | 39. | De Jong WH, Van Der Ven LT, Sleijffers A, et al. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials, 2013, 34(33): 8333-8343. |