| 1. | Lamb AL. Breaking a pathogen’s iron will: Inhibiting siderophore production as an antimicrobial strategy. Biochim Biophys Acta, 2015, 1854(8): 1054-1070. | 
				                                                        
				                                                            
				                                                                | 2. | Kramer J, ?zkaya ?, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol, 2020, 18(3): 152-163. | 
				                                                        
				                                                            
				                                                                | 3. | 陳辭言, 杜艷. 高毒力肺炎克雷伯菌研究進展. 中華實驗和臨床感染病雜志(電子版), 2019, 13(2): 89-92. | 
				                                                        
				                                                            
				                                                                | 4. | Ou Q, Fan J, Duan D, <italic>et al</italic>. Involvement of cAMP receptor protein in biofilm formation, fimbria production, capsular polysaccharide biosynthesis and lethality in mouse of <italic>Klebsiella pneumoniae</italic> serotype K1 causing pyogenic liver abscess. J Med Microbiol, 2017, 66(1): 1-7. | 
				                                                        
				                                                            
				                                                                | 5. | Manneh-Roussel J, Haycocks JRJ, Magán A, <italic>et al</italic>. cAMP receptor protein controls vibrio cholerae gene expression in response to host colonization. mBio, 2018, 9(4): e00966-18. | 
				                                                        
				                                                            
				                                                                | 6. | Almblad H, Rybtke M, Hendiani S, <italic>et al</italic>. High levels of cAMP inhibit <italic>Pseudomonas aeruginosa</italic> biofilm formation through reduction of the c-di-GMP content. Microbiology, 2019, 165(3): 324-333. | 
				                                                        
				                                                            
				                                                                | 7. | Green J, Stapleton MR, Smith LJ, <italic>et al</italic>. Cyclic-AMP and bacterial cyclic-AMP receptor proteins revisited: adaptation for different ecological niches. Curr Opin Microbiol, 2014, 18(100): 1-7. | 
				                                                        
				                                                            
				                                                                | 8. | Durai L, Vijayalakshmi R, Karunagaran D. A novel reporter system for cyclic AMP mediated gene expression in mammalian cells based on synthetic transgene expression system. Eur J Pharmacol, 2019, 855: 56-64. | 
				                                                        
				                                                            
				                                                                | 9. | Liu B, Hong C, Huang RK, <italic>et al</italic>. Structural basis of bacterial transcription activation. Science, 2017, 358(6365): 947-951. | 
				                                                        
				                                                            
				                                                                | 10. | Feng Y, Zhang Y, Ebright RH. Structural basis of transcription activation. Science, 2016, 352(6291): 1330-1333. | 
				                                                        
				                                                            
				                                                                | 11. | Paczosa MK, Mecsas J. <italic>Klebsiella pneumoniae</italic>: going on the offense with a strong defense. Microbiol Mol Biol Rev, 2016, 80(3): 629-661. | 
				                                                        
				                                                            
				                                                                | 12. | 豐雯詩, 王逸群, 陳旭巖. 肺炎克雷伯菌毒力影響因素和耐藥機制研究進展. 北京醫學, 2019, 41(7): 588-591. | 
				                                                        
				                                                            
				                                                                | 13. | Lam MMC, Wyres KL, Judd LM, <italic>et al</italic>. Tracking key virulence loci encoding aerobactin and salmochelin siderophore synthesis in <italic>Klebsiella pneumoniae</italic>. Genome Med, 2018, 10(1): 77. | 
				                                                        
				                                                            
				                                                                | 14. | Russo TA, Olson R, Macdonald U, <italic>et al</italic>. <italic>Aerobactin</italic> mediates virulence and accounts for increased siderophore production underiron-limiting conditions by hypervirulent (hypermucoviscous)<italic>Klebsiella pneumoniae</italic>. Infect Immun, 2014, 82(6): 2356-2367. | 
				                                                        
				                                                            
				                                                                | 15. | Arabaghian H, Salloum T, Alousi S, <italic>et al</italic>. Molecular characterization of carbapenem resistant <italic>Klebsiella pneumoniae</italic> and <italic>Klebsiella quasipneumoniae</italic> isolated from Lebanon. Sci Rep, 2019, 9(1): 531. | 
				                                                        
				                                                            
				                                                                | 16. | Shankar C, Veeraraghavan B, Nabarro LEB, <italic>et al</italic>. Whole genome analysis of hypervirulent <italic>Klebsiella pneumoniae</italic> isolates from community and hospital acquired bloodstream infection. BMC Microbiol, 2018, 18(1): 6. | 
				                                                        
				                                                            
				                                                                | 17. | 楊世亞. cAMP受體蛋白調控肺炎克雷伯菌kfuABC操縱子的研究. 重慶: 重慶醫科大學, 2014: 1-63. | 
				                                                        
				                                                            
				                                                                | 18. | 高倩倩, 殷杏, 祝俊英, 等. 碳青霉烯類耐藥肺炎克雷伯菌的分子特征. 中國感染與化療雜志, 2018, 18(1): 53-57. | 
				                                                        
				                                                            
				                                                                | 19. | Fetherston JD, Kirillina O, Bobrov AG, <italic>et al</italic>. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun, 2010, 78(5): 2045-2052. | 
				                                                        
				                                                            
				                                                                | 20. | Pechous RD, Sivaraman V, Stasulli NM, <italic>et al</italic>. Pneumonic plague: the darker side of <italic>Yersinia pestis</italic>. Trends Microbiol, 2016, 24(3): 190-197. | 
				                                                        
				                                                            
				                                                                | 21. | Ritzert JT, Minasov G, Embry R, <italic>et al</italic>. The cyclic AMP receptor protein regulates quorum sensing and global gene expression in <italic>Yersinia pestis</italic> during planktonic growth and growth in biofilms. mBio, 2019, 10(6): e02613-19. | 
				                                                        
				                                                            
				                                                                | 22. | Bobrov AG, Kirillina O, Fosso MY, <italic>et al</italic>. Zinc transporters YbtX and ZnuABC are required for the virulence of <italic>Yersinia pestis</italic> in bubonic and pneumonic plague in mice. Metallomics, 2017, 9(6): 757-772. | 
				                                                        
				                                                            
				                                                                | 23. | Caulfield AJ, Walker ME, Gielda LM, <italic>et al</italic>. The Pla protease of <italic>Yersinia pestis</italic> degrades fas ligand to manipulate host cell death and inflammation. Cell Host Microbe, 2014, 15(4): 424-434. | 
				                                                        
				                                                            
				                                                                | 24. | Ritzert JT, Lathem WW. Depletion of glucose activates catabolite repression during pneumonic plague. J Bacteriol, 2018, 200(11): e00737-17. | 
				                                                        
				                                                            
				                                                                | 25. | 于明明, 張康, 王曉威, 等. 創傷弧菌致病機制、抗生素耐藥及污染現狀. 社區醫學雜志, 2018, 16(8): 83-86. | 
				                                                        
				                                                            
				                                                                | 26. | Kim JA, Lee MA, Jung YC, <italic>et al</italic>. Repression of VvpM protease expression by quorum sensing and the cAMP-cAMP receptor protein complex in <italic>Vibrio vulnificus</italic>. J Bacteriol, 2018, 200(7): e00526-17. | 
				                                                        
				                                                            
				                                                                | 27. | Kim CM, Ahn YJ, Kim SJ, <italic>et al</italic>. Temperature change induces the expression of vuuA encoding <italic>Vulnibactin</italic> receptor and crp encoding cyclic AMP receptor protein in <italic>Vibrio vulnificus</italic>. Curr Microbiol, 2016, 73(1): 54-64. | 
				                                                        
				                                                            
				                                                                | 28. | Oh MH, Lee SM, Lee DH, <italic>et al</italic>. Regulation of the <italic>Vibrio vulnificus hupA</italic> gene by temperature alteration and cyclic AMP receptor protein and evaluation of its role in virulence. Infect Immun, 2009, 77(3): 1208-1215. | 
				                                                        
				                                                            
				                                                                | 29. | Kim CM, Kim SJ, Shin SH. Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in <italic>Vibrio vulnificus</italic>. J Microbiol, 2012, 50(2): 320-325. | 
				                                                        
				                                                            
				                                                                | 30. | Zhang Z, Gosset G, Barabote R, <italic>et al</italic>. Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in <italic>Escherichia coli</italic>. J Bacteriol, 2005, 187(3): 980-990. | 
				                                                        
				                                                            
				                                                                | 31. | Huang TP, Wong AC. A cyclic AMP receptor protein-regulated cell-cell communication system mediates expression of a FecA homologue in <italic>Stenotrophomonas maltophilia</italic>. Appl Environ Microbiol, 2007, 73(15): 5034-5040. | 
				                                                        
				                                                            
				                                                                | 32. | Choi J, Jung WH, Kronstad JW. The cAMP/protein kinaseA signaling pathway in pathogenic basidiomycete fungi: connections with iron homeostasis. J Microbiol, 2015, 53(9): 579-587. |