| 1. |
Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw, 1994, 5(2): 157-166.
|
| 2. |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735-1780.
|
| 3. |
王博冉, 林夏, 朱曉東, 等. Lattice LSTM神經網絡法中文醫學文本命名實體識別模型研究. 中國衛生信息管理雜志, 2019, 16(1): 84-88.
|
| 4. |
張笑天. 基于Lattice LSTM的醫學文本中文命名實體識別研究與實現. 成都: 電子科技大學, 2019.
|
| 5. |
王序文, 李姣, 吳英杰, 等. 基于BiLSTM-CRF的中文生物醫學開放式概念關系抽取. 中華醫學圖書情報雜志, 2018, 27(11): 33-39.
|
| 6. |
Li PL, Yuan ZM, Tu WN, et al. Medical knowledge extraction and analysis from electronic medical records using deep learning. Chin Med Sci J, 2019, 34(2): 133-139.
|
| 7. |
黃夢醒, 李夢龍, 韓惠蕊. 基于電子病歷的實體識別和知識圖譜構建的研究. 計算機應用研究, 2019, 36(12): 3735-3739.
|
| 8. |
楊紅梅, 李琳, 楊日東, 等. 基于雙向LSTM神經網絡電子病歷命名實體的識別模型. 中國組織工程研究, 2018, 22(20): 3237-3242.
|
| 9. |
Liu Z, Yang M, Wang XL, et al. Entity recognition from clinical texts via recurrent neural network. BMC Med Inform Decis Mak, 2017, 17(Suppl 2): 67.
|
| 10. |
Zhao YS, Zhang KL, Ma HC, et al. Leveraging text skeleton for de-identification of electronic medical records. BMC Med Inform Decis Mak, 2018, 18(Suppl 1): 18.
|
| 11. |
Jiang Z, Zhao C, He B, et al. De-identification of medical records using conditional random fields and long short-term memory networks. J Biomed Inform, 2017, 75S: S43-S53.
|
| 12. |
陳美杉, 夏晨曦. 肝癌患者在線提問的命名實體識別研究: 一種基于遷移學習的方法. 數據分析與知識發現, 2019, 3(12): 61-69.
|
| 13. |
Abatemarco D, Perera S, Bao SH, et al. Training augmented intelligent capabilities for pharmacovigilance: applying deep-learning approaches to individual case safety report processing. Pharmaceut Med, 2018, 32(6): 391-401.
|
| 14. |
Zhou D, Miao L, He Y. Position-aware deep multi-task learning for drug-drug interaction extraction. Artif Intell Med, 2018, 87: 1-8.
|
| 15. |
Zheng W, Lin H, Luo L, et al. An attention-based effective neural model for drug-drug interactions extraction. BMC Bioinformatics, 2017, 18(1): 445.
|
| 16. |
Huang D, Jiang Z, Zou L, et al. Drug-drug interaction extraction from biomedical literature using support vector machine and long short term memory networks. Inf Sci, 2017, 415-416: 100-109.
|
| 17. |
Li H, Yang M, Chen QC, et al. Chemical-induced disease extraction via recurrent piecewise convolutional neural networks. BMC Med Inform Decis Mak, 2018, 18(Suppl 2): 60.
|
| 18. |
Weng WH, Wagholikar KB, Mccray AT, et al. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach. BMC Med Inform Decis Mak, 2017, 17(1): 155.
|
| 19. |
Luo Y. Recurrent neural networks for classifying relations in clinical notes. J Biomed Inform, 2017, 72: 85-95.
|
| 20. |
Hu Y, Wen GH, Ma JJ, et al. Label-indicator morpheme growth on LSTM for Chinese healthcare question department classification. J Biomed Inform, 2018, 82: 154-168.
|
| 21. |
Tahmasebi AM, Zhu H, Mankovich G, et al. Automatic normalization of anatomical phrases in radiology reports using unsupervised learning. J Digit Imaging, 2019, 32(1): 6-18.
|
| 22. |
Dergachyova O, Morandi X, Jannin P. Knowledge transfer for surgical activity prediction. Int J Comput Assist Radiol Surg, 2018, 13(9): 1409-1417.
|
| 23. |
Chen H, Gangaram V, Shih G. Developing a more responsive radiology resident dashboard. J Digit Imaging, 2019, 32(1): 81-90.
|
| 24. |
Wang H, Li C, Zhang JH, et al. A new LSTM-based gene expression prediction model: L-GEPM. J Bioinform Comput Biol, 2019, 17(4): 1950022.
|
| 25. |
謝尚欣. 基于深度學習的蛋白質二級結構預測. 杭州: 浙江理工大學, 2017.
|
| 26. |
王劍, 成金勇, 趙志剛, 等. 基于CNN與LSTM模型的蛋白質二級結構預測. 生物信息學, 2018, 16(2): 130-136.
|
| 27. |
郭延哺, 李維華, 王兵益, 等. 基于卷積長短時記憶神經網絡的蛋白質二級結構預測. 模式識別與人工智能, 2018, 31(6): 562-568.
|
| 28. |
吳輝. 利用序列信息預測蛋白質二級結構的深度學習模型研究. 天津: 天津大學, 2017.
|
| 29. |
曹成遠, 呂強. 使用雙向LSTM的深度神經網絡預測蛋白質殘基相互作用. 小型微型計算機系統, 2017, 38(3): 531-535.
|
| 30. |
凌少平. 基于遞歸神經網的蛋白質結構域預測方法研究. 湘潭: 湘潭大學, 2007.
|
| 31. |
黃易初. 基于深度學習的蛋白質結構域邊界預測研究. 武漢: 華中科技大學, 2016.
|
| 32. |
Hochreiter S, Heusel M, Obermayer K. Fast model-based protein homology detection without alignment. Bioinformatics, 2007, 23(14): 1728-1736.
|
| 33. |
Li S, Chen J, Liu B. Protein remote homology detection based on bidirectional long short-term memory. BMC Bioinformatics, 2017, 18(1): 443.
|
| 34. |
王帥, 蔡磊鑫, 顧倜, 等. 運用雙向LSTM擬合RNA二級結構打分函數. 計算機應用與軟件, 2017, 34(9): 232-239.
|
| 35. |
姜鵬. 多態性位點和致病基因的檢測模型構建與算法研究. 南寧: 廣西大學, 2017.
|
| 36. |
Nagarajan D, Nagarajan T, Roy N, et al. Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. J Biol Chem, 2018, 293(10): 3492-3509.
|
| 37. |
范光鵬, 孫仁誠, 邵峰晶. HIV-1蛋白酶切割位點預測研究. 青島大學學報(工程技術版), 2018, 33(2): 1-6.
|
| 38. |
張婭楠, 趙涓涓, 趙鑫, 等. 多模態融合下長時程肺部病灶良惡性預測方法. 計算機工程與應用, 2019, 55(10): 146-153.
|
| 39. |
Han Z, Wei BZ, Mercado A, et al. Spine-GAN: semantic segmentation of multiple spinal structures. Med Image Anal, 2018, 50: 23-35.
|
| 40. |
Pei M, Wu X, Guo Y, et al. Small bowel motility assessment based on fully convolutional networks and long short-term memory. Knowl Based Syst, 2017, 121: 163-172.
|
| 41. |
He X, Yang Y, Shi B, et al. VD-SAN: visual-densely semantic attention network for image caption generation. Neurocomputing, 2018, 328(7): 48-55.
|
| 42. |
安瑩瑩. 基于深度學習的小兒白內障裂隙圖像診斷研究及治療效果預測. 西安: 西安電子科技大學, 2017.
|
| 43. |
Azizi S, Van WN, Sojoudi S, et al. Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy. Int J Comput Assist Radiol Surg, 2018, 13(8): 1201-1209.
|
| 44. |
Ahmedt-Aristizabal D, Fookes C, Nguyen K, et al. Deep facial analysis: a new phase I epilepsy evaluation using computer vision. Epilepsy Behav, 2018, 82: 17-24.
|
| 45. |
Oh SL, Ng E, Tan RS, et al. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput Biol Med, 2018, 102: 278-287.
|
| 46. |
Swapna G, Soman KP, Vinayakumar R. Automated detection of cardiac arrhythmia using deep learning techniques. Procedia Comput Sci, 2018, 132: 1192-1201.
|
| 47. |
Andersen RS, Peimankar A, Puthusserypady S. A deep learning approach for real-time detection of atrial fibrillation. Expert Syst Appl, 2018, 115: 465-473.
|
| 48. |
李雪. 基于LSTM的心律失常分類研究. 蘭州: 蘭州大學, 2018.
|
| 49. |
Swapna G, Soman Kp, Vinayakumar R. Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals. Procedia Comp Sci, 2018, 132: 1253-1262.
|
| 50. |
Tan JH, Hagiwara Y, Pang W, et al. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput Biol Med, 2018, 94: 19-26.
|
| 51. |
Qiu Y, Huang K, Xiao F, et al. A segment-wise reconstruction method based on bidirectional long short term memory for power line interference suppression. Biocybern Biomed Eng, 2018, 38(2): 217-227.
|
| 52. |
辛雨航. 基于半監督與時序模型的腦電信號特征提取方法研究. 濟南: 山東大學, 2018.
|
| 53. |
安恩瑩. 基于時序信息的腦電信號分類. 北京: 北京郵電大學, 2018.
|
| 54. |
張秀麗, 夏斌. 基于CNN-LSTM網絡的睡眠分期研究. 微型機與應用, 2017, 36(17): 88-91.
|
| 55. |
Tsiouris ΚΜ, Pezoulas VC, Zervakis M, et al. A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput Biol Med, 2018, 99: 24-37.
|
| 56. |
Li Y, Charalampaki P, Liu Y, et al. Context aware decision support in neurosurgical oncology based on an efficient classification of endomicroscopic data. Int J Comput Assist Radiol Surg, 2018, 13(8): 1187-1199.
|
| 57. |
郭彥杰. 基于循環神經網絡的脈搏信號分析研究. 北京: 北京郵電大學, 2018.
|
| 58. |
Zhao A, Qi L, Dong J, et al. Dual channel LSTM based multi-feature extraction in gait for diagnosis of neurodegenerative diseases. Knowl Based Syst, 2018, 145: 91-97.
|
| 59. |
Medina-Quero J, Zhang S, Nugent C, et al. Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition. Expert Syst Appl, 2018, 114: 441-453.
|
| 60. |
Taramasco C, Lazo Y, Rodenas T, et al. System design for emergency alert triggered by falls using convolutional neural networks. J Med Syst, 2020, 44(2): 50.
|
| 61. |
Liu ZC, Ling ZH, Dai LR. Articulatory-to-acoustic conversion using BLSTM-RNNs with augmented input representation. Speech Commun, 2018, 99: 161-172.
|
| 62. |
Chen T, Zhang X, Jiang H, et al. Are you smoking? Automatic alert system helping people keep away from cigarettes. Smart Health, 2018, 9-10: 158-169.
|
| 63. |
朱靜陽. 基于LDBN的心臟病發病風險模型研究. 鄭州: 鄭州大學, 2017.
|
| 64. |
陳德華, 殷蘇娜, 樂嘉錦, 等. 一種面向臨床領域時序知識圖譜的鏈接預測模型. 計算機研究與發展, 2017, 54(12): 2687-2697.
|
| 65. |
Kam HJ, Kim HY. Learning representations for the early detection of sepsis with deep neural networks. Comput Biol Med, 2017, 89: 248-255.
|
| 66. |
鄭亞鵬, 樊璐. 基于LSTM的臨床血液需求預測方法. 計算機與現代化, 2018(5): 41-44, 120.
|
| 67. |
柴龍凱. 基于數據(序列模式)挖掘的醫院物資使用量預測模型研究. 青島: 青島科技大學, 2018.
|
| 68. |
Reddy BK, Delen D. Predicting hospital readmission for lupus patients: an RNN-LSTM-based deep-learning methodology. Comput Biol Med, 2018, 101: 199-209.
|
| 69. |
盧鵬飛, 須成杰, 張敬誼, 等. 基于SARIMA-LSTM的門診量預測研究. 大數據, 2019, 5(6): 101-110.
|
| 70. |
韓天齊, 宋波. 基于LSTM神經網絡的麻疹發病率預測. 電腦與電信, 2018(5): 54-57.
|