| 1. |
Liu W. A narrative review of gait training after stroke anda proposal for developing a novel gait training device that provides minimal assistance. Top Stroke Rehabil, 2018, 25(5): 375-383.
|
| 2. |
Zhang X, Elnady AM, Randhawa BK, et al. Combining mental training and physical training with goal-oriented protocols in stroke rehabilitation: a feasibility case study. Front Hum Neurosci, 2018, 12: 125.
|
| 3. |
Taveggia G, Borboni A, Mulé C, et al. Conflicting results of robot-assisted versus usual gait training during postacute rehabilitation of stroke patients: a randomized clinical trial. Int J Rehabil Res, 2016, 39(1): 29-35.
|
| 4. |
Duncan PW, Sullivan KJ, Behrman AL, et al. Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med, 2011, 364(21): 2026-2036.
|
| 5. |
Mustafaoglu R, Erhan B, Yeldan I, et al. Does robot-assisted gait training improve mobility, activities of daily living and quality of life in stroke? A single-blinded, randomized controlled trial. Acta Neurol Belg, 2020, 120(2): 335-344.
|
| 6. |
王俊, 楊振輝, 劉海兵, 等. 下肢康復機器人在腦卒中患者步行障礙中的應用和研究進展. 中國康復醫學雜志, 2014, 29(8): 784-788.
|
| 7. |
李冰, 卞立, 黃澎. A3 機器人對腦卒中患者步行功能的影響. 中國康復醫學雜志, 2014, 29(12): 1142-1145.
|
| 8. |
林海丹, 張韜, 陳青, 等. 康復機器人輔助步行訓練對不完全性脊髓損傷患者步行能力的影響. 自動化學報, 2016, 42(12): 1832-1838.
|
| 9. |
中華神經科學會, 中華神經外科學會. 各類腦血管疾病診斷要點. 中華神經科雜志, 1996, 29(6): 379-380.
|
| 10. |
Buesing C, Fisch G, O′Donnell M, et al. Effects of a wearable exoskeleton stride management assist system (SMA?) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. J Neuroeng Rehabil, 2015, 12: 69.
|
| 11. |
張雅靜, 張小蘭, 馬延愛, 等. Barthel 指數量表應用于急性腦卒中患者生活能力測量的信度研究. 中國護理管理, 2007, 7(5): 30-32.
|
| 12. |
Stinear CM. Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol, 2017, 16(10): 826-836.
|
| 13. |
勵建安, 孟殿懷. 步態分析的臨床應用. 中華物理醫學與康復雜志, 2006, 28(7): 500-503.
|
| 14. |
Morone G, Paolucci S, Cherubini A, et al. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat, 2017, 13: 1303-1311.
|
| 15. |
王麗萍. 康復治療時機對腦卒中患者預后的影響. 河北醫學, 2014, 20(11): 1798-1800, 1801.
|
| 16. |
van Kammen K, Boonstra AM, van der Woude LHV, et al. Differences in muscle activity and temporal step parameters between lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers. J Neuroeng Rehabil, 2017, 14(1): 32.
|
| 17. |
Calabrò RS, Naro A, Russo M, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial. J Neuroeng Rehabil, 2018, 15(1): 35.
|
| 18. |
Yoshimoto T, Shimizu I, Hiroi Y. Sustained effects of once-a-week gait training with hybrid assistive limb for rehabilitation in chronic stroke: case study. J Phys Ther Sci, 2016, 28(9): 2684-2687.
|
| 19. |
Iosa M, Morone G, Bragoni M, et al. Driving electromechanically assisted gait trainer for people with stroke. J Rehabil Res Dev, 2011, 48(2): 135-146.
|
| 20. |
Shi D, Zhang W, Ding X, et al. Parametric generation of three-dimensional gait for robot-assisted rehabilitation. Biol Open, 2020, 9(3): pii: bio047332.
|
| 21. |
Lefeber N, De Buyzer S, Dassen N, et al. Energy consumption and cost during walking with different modalities of assistance after stroke: a systematic review and meta-analysis. Disabil Rehabil, 2019: 1-17.
|
| 22. |
Erbil D, Tugba G, Murat TH, et al. Effects of robot-assisted gait training in chronic stroke patients treated by botulinum toxin-a: a pivotal study. Physiother Res Int, 2018, 23(3): e1718.
|
| 23. |
Bustamante Valles K, Montes S, Madrigal Mde J, et al. Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym. J Neuroeng Rehabil, 2016, 13(1): 83.
|
| 24. |
Wernig A. “Ineffectiveness” of automated locomotor training. Arch Phys Med Rehabil, 2005, 86(12): 2385-236.
|
| 25. |
Hebenstreit F, Leibold A, Krinner S, et al. Effect of walking speed on gait sub phase durations. Hum Mov Sci, 2015, 43: 118-124.
|
| 26. |
張利. 不同步行速度的下肢康復機器人訓練對腦卒中患者步行能力的影響. 重慶: 重慶醫科大學, 2018.
|
| 27. |
Yoshimoto T, Shimizu I, Hiroi Y, et al. Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control. Int J Rehabil Res, 2015, 38(4): 338-343.
|
| 28. |
Lam T, Anderschitz M, Dietz V. Contribution of feedback and feedforward strategies to locomotor adaptations. J Neurophysiol, 2006, 95(2): 766-773.
|
| 29. |
Reisman DS, Wityk R, Silver K, et al. Locomotor adaptation ona split-belt treadmill can improve walking symmetry post-stroke. Brain, 2007, 130(Pt 7): 1861-1872.
|
| 30. |
Ohura T, Hase K, Nakajima Y, et al. Validity and reliability ofa performance evaluation tool based on the modified Barthel Index for stroke patients. BMC Med Res Methodol, 2017, 17(1): 131.
|
| 31. |
Nascimento LR, de Oliveira CQ, Ada L, et al. Walking training with cueing of cadence improves walking speed and stride length after stroke more than walking training alone: a systematic review. J Physiother, 2015, 61(1): 10-15.
|