脊髓損傷是一種全球高發病率、高致殘性和高死亡率的中樞神經系統疾病,不僅嚴重降低患者的生存質量,還給家庭、社會帶來巨大的負擔。脊髓損傷后的細胞應答和生物化學紊亂等病理改變主要依賴于特異性基因的表達或抑制。而微RNA(miRNA)在脊髓損傷后基因表達起著重要的開關作用。miRNA是真核生物中的一類由內源基因編碼的長度為18~25個核苷酸的非編碼RNA。它們在轉錄后水平調控基因表達,在脊椎動物脊髓損傷后病理調控中起重要作用。miRNA能成為調控細胞狀態和分子機制,提高脊髓損傷后功能恢復的有效治療工具。該文主要就miRNA在脊髓損傷后的表達變化及其在脊髓損傷后病理改變過程中的作用予以綜述,探討基于miRNA治療脊髓損傷的可行性,以期改善脊髓損傷的臨床預后。
Citation: 賀琴琴, 王廷華, 羅朝志. 微RNA在脊髓損傷中的作用及研究進展. West China Medical Journal, 2016, 31(10): 1782-1789. doi: 10.7507/1002-0179.201600490 Copy
Copyright ? the editorial department of West China Medical Journal of West China Medical Publisher. All rights reserved
| 1. | Han J, Lee Y, Yeom KH, et al. The Drosha-DGCR8 complex in primary microRNA processing[J]. Genes Dev, 2004, 18(24): 3016-3027. | 
| 2. | Han J, Lee Y, Yeom KH, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex[J]. Cell, 2006, 125(5): 887-901. | 
| 3. | Lund E, Güttinger S, Calado A, et al. Nuclear export of microRNA precursors[J]. Science, 2004, 303(5654): 95-98. | 
| 4. | Shukla GC, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions[J]. Mol Cell Pharmacol, 2011, 3(3): 83-92. | 
| 5. | Lee EJ, Baek M, Gusev Y, et al. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors[J]. RNA, 2008, 14(1): 35-42. | 
| 6. | Li M, Marin-Muller C, Bharadwaj U, et al. MicroRNAs: control and loss of control in human physiology and disease[J]. World J Surg, 2009, 33(4): 667-684. | 
| 7. | Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay[J]. Nat Rev Genet, 2011, 12(2): 99-110. | 
| 8. | Beitzinger M, Meister G. MicroRNAs: from decay to decoy[J]. Cell, 2010, 140(5): 612-614. | 
| 9. | De Biase A, Knoblach SM, Di Giovanni S, et al. Gene expression profiling of experimental traumatic spinal cord injury as a function of distance from impact site and injury severity[J]. Physiol Genomics, 2005, 22(3): 368-381. | 
| 10. | Liu NK, Wang XF, Lu QB, et al. Altered microRNA expression following traumatic spinal cord injury[J]. Exp Neurol, 2009, 219(2): 424-429. | 
| 11. | Kosik KS. The neuronal microRNA system[J]. Nat Rev Neurosci, 2006, 7(12): 911-920. | 
| 12. | Thomas M, Boname JM, Field S, et al. Down-regulation of NKG2D and NKp80 ligands by Kaposi's sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity[J]. Proc Natl Acad Sci USA, 2008, 105(5): 1656-1661. | 
| 13. | Nakanishi K, Nakasa T, Tanaka N, et al. Responses of microRNAs 124a and 223 following spinal cord injury in mice[J]. Spinal Cord, 2010, 48(3): 192-196. | 
| 14. | Jee MK, Jung JS, Choi JI, et al. MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury[J]. Brain, 2012, 135 (Pt 4): 1237-1252. | 
| 15. | Jee MK, Jung JS, Im YB, et al. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord[J]. Hum Gene Ther, 2012, 23(5): 508-520. | 
| 16. | Im YB, Jee MK, Choi JI, et al. Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord[J]. Cell Death Dis, 2012, 3: e426. | 
| 17. | Strickland ER, Hook MA, Balaraman S, et al. MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair[J]. Neuroscience, 2011, 186: 146-160. | 
| 18. | Hu JR, Lv GH, Yin BL. Altered microRNA expression in the ischemic-reperfusion spinal cord with atorvastatin therapy[J]. J Pharmacol Sci, 2013, 121(4): 343-346. | 
| 19. | Yunta M, Nieto-Díaz M, Esteban FJ, et al. MicroRNA dysregulation in the spinal cord following traumatic injury[J]. PLoS One, 2012, 7(4): e34534. | 
| 20. | Natera-Naranjo O, Aschrafi A, Gioio AE, et al. Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons[J]. RNA, 2010, 16(8): 1516-1529. | 
| 21. | Zou D, Chen Y, Han Y, et al. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells[J]. Neural Regen Res, 2014, 9(12): 1241-1248. | 
| 22. | Wu R, Wang N, Li M, et al. Experimental study on the facilitative effects of miR-125b on the differentiation of rat bone marrow mesenchymal stem cells into neuron-like cells[J]. Cell Biol Int, 2013, 37(8): 812-819. | 
| 23. | Xu WW, Wang XY, Li P, et al. miR-124 regulates neural stem cells in the treatment of spinal cord injury[J]. Neurosci Lett, 2012, 529(1): 12-17. | 
| 24. | Jovi?i? A, Roshan R, Moisoi N, et al. Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes[J]. J Neurosci, 2013, 33(12): 5127-5137. | 
| 25. | Qian BJ, You L, Shang FF, et al. Vimentin regulates neuroplasticity in transected spinal cord rats associated with micRNA138[J]. Mol Neurobiol, 2015, 51(2): 437-447. | 
| 26. | Wang CY, Yang SH, Tzeng SF. MicroRNA-145 as one negative regulator of astrogliosis[J]. Glia, 2015, 63(2): 194-205. | 
| 27. | Hong P, Jiang M, Li H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse[J]. Glia, 2014, 62(12): 2044-2060. | 
| 28. | Fitzpatrick JM, Anderson RC, McDermott KW. MicroRNA: key regulators of oligodendrocyte development and pathobiology[J]. Int J Biochem Cell Biol, 2015, 65: 134-138. | 
| 29. | Hoffmann SA, Hos D, Küspert M, et al. Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes[J]. Development, 2014, 141(1): 39-50. | 
| 30. | Lin ST, Huang Y, Zhang L, et al. MicroRNA-23a promotes myelination in the central nervous system[J]. Proc Natl Acad Sci USA, 2013, 110(43): 17468-17473. | 
| 31. | Rowland JW, Hawryluk GW, Kwon B, et al. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon[J]. Neurosurg Focus, 2008, 25(5): E2. | 
| 32. | Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade[J]. Acta Neurobiol Exp (Wars), 2011, 71(2): 281-299. | 
| 33. | Silver J, Miller JH. Regeneration beyond the glial scar[J]. Nat Rev Neurosci, 2004, 5(2): 146-156. | 
| 34. | Profyris C, Cheema SS, Zang D, et al. Degenerative and regenerative mechanisms governing spinal cord injury[J]. Neurobiol Dis, 2004, 15(3): 415-436. | 
| 35. | Jones TB, McDaniel EE, Popovich PG. Inflammatory-mediated injury and repair in the traumatically injured spinal cord[J]. Curr Pharm Des, 2005, 11(10): 1223-1236. | 
| 36. | Chen CZ, Schaffert S, Fragoso R, et al. Regulation of immune responses and tolerance: the microRNA perspective[J]. Immunol Rev, 2013, 253(1): 112-128. | 
| 37. | Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1[J]. Proc Natl Acad Sci USA, 2008, 105(5): 1516-1521. | 
| 38. | Aimone JB, Leasure JL, Perreau VM, et al. Spatial and temporal gene expression profiling of the contused rat spinal cord[J]. Exp Neurol, 2004, 189(2): 204-221. | 
| 39. | Izumi B, Nakasa T, Tanaka N, et al. MicroRNA-223 expression in neutrophils in the early phase of secondary damage after spinal cord injury[J]. Neurosci Lett, 2011, 492(2): 114-118. | 
| 40. | Guedes J, Cardoso AL, Pedroso de Lima MC. Involvement of microRNA in microglia-mediated immune response[J]. Clin Dev Immunol, 2013, 2013: 186872. | 
| 41. | Hutchison ER, Kawamoto EM, Taub DD, et al. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes[J]. Glia, 2013, 61(7): 1018-1028. | 
| 42. | Iliopoulos D, Jaeger SA, Hirsch HA, et al. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic Switch linking inflammation to cancer[J]. Mol Cell, 2010, 39(4): 493-506. | 
| 43. | Li YY, Cui JG, Dua P, et al. Differential expression of miRNA-146a-regulated inflammatory genes in human primary neural, astroglial and microglial cells[J]. Neurosci Lett, 2011, 499(2): 109-113. | 
| 44. | Sheedy FJ, Palsson-Mcdermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21[J]. Nat Immunol, 2010, 11(2): 141-147. | 
| 45. | Young MR, Santhanam AN, Yoshikawa N, et al. Have tumor suppressor PDCD4 and its counteragent oncogenic miR-21 gone rogue?[J]. Mol Interv, 2010, 10(2): 76-79. | 
| 46. | Liu XZ, Xu XM, Hu R, et al. Neuronal and glial apoptosis after traumatic spinal cord injury[J]. J Neurosci, 1997, 17(14): 5395-5406. | 
| 47. | Wang, Z. MicroRNA: a matter of life or death[J]. World J Biol Chem, 2010, 1(4): 41-54. | 
| 48. | Citron BA, Arnold PM, Sebastian C, et al. Rapid upregulation of caspase-3 in rat spinal cord after injury: mRNA, protein, and cellular localization correlates with apoptotic cell death[J]. Exp Neurol, 2000, 166(2): 213-226. | 
| 49. | Casha S, Yu WR, Fehlings MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat[J]. Neuroscience, 2001, 103(1): 203-218. | 
| 50. | Buller B, Liu X, Wang X, et al. MicroRNA-21 protects neurons from ischemic death[J]. FEBS J, 2010, 277(20): 4299-4307. | 
| 51. | Hafez MM, Hassan ZK, Zekri AR, et al. MicroRNAs and metastasis-related gene expression in Egyptian breast cancer patients[J]. Asian Pac J Cancer Prev, 2012, 13(2): 591-598. | 
| 52. | Qiu J, Nesic O, Ye Z, et al. Bcl-xL expression after contusion to the rat spinal cord[J]. J Neurotrauma, 2001, 18(11): 1267-1278. | 
| 53. | Kaur P, Armugam A, Jeyaseelan K. MicroRNAs in Neurotoxicity[J]. J Toxicol, 2012, 2012: 870150. | 
| 54. | Carrillo ED, Escobar Y, González G, et al. Posttranscriptional regulation of the β2-subunit of cardiac L-type Ca2+ channels by MicroRNAs during long-term exposure to isoproterenol in rats[J]. J Cardiovasc Pharmacol, 2011, 58(5): 470-478. | 
| 55. | Santoscoy C, Ríos C, Franco-Bourland RE, et al. Lipid peroxidation by nitric oxide supplements after spinal cord injury: effect of antioxidants in rats[J]. Neurosci Lett, 2002, 330(1): 94-98. | 
| 56. | Dharap A, Bowen K, Place R, et al. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome[J]. J Cereb Blood Flow Metab, 2009, 29(4): 675-687. | 
| 57. | Bhalala OG, Srikanth M, Kessler JA. The emerging roles of microRNAs in CNS injuries[J]. Nat Rev Neurol, 2013, 9(6): 328-339. | 
| 58. | Goldberg JL. How does an axon grow?[J]. Genes Dev, 2003, 17(8): 941-958. | 
| 59. | Hong J, Zhang H, Kawase-Koga Y, et al. MicroRNA function is required for neurite outgrowth of mature neurons in the mouse postnatal cerebral cortex[J]. Front Cell Neurosci, 2013, 7: 151. | 
| 60. | Yu YM, Gibbs KM, Davila J, et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish[J]. Eur J Neurosci, 2011, 33(9): 1587-1597. | 
| 61. | Yu JY, Chung KH, Deo M, et al. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation[J]. Exp Cell Res, 2008, 314(14): 2618-2633. | 
| 62. | Di Giovanni S, De Biase A, Yakovlev A, et al. In vivo and in vitro characterization of novel neuronal plasticity factors identified following spinal cord injury[J]. J Biol Chem, 2005, 280(3): 2084-2091. | 
| 63. | Dugas JC, Cuellar TL, Scholze A, et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination[J]. Neuron, 2010, 65(5): 597-611. | 
| 64. | Shin D, Shin JY, Mcmanus MT, et al. Dicer ablation in oligodendrocytes provokes neuronal impairment in mice[J]. Ann Neurol, 2009, 66(6): 843-857. | 
| 65. | Sofroniew MV. Reactive astrocytes in neural repair and protection[J]. Neuroscientist, 2005, 11(5): 400-407. | 
| 66. | Bhalala OG, Pan L, Sahni V, et al. microRNA-21 regulates astrocytic response following spinal cord injury[J]. J Neurosci, 2012, 32(50): 17935-17947. | 
| 67. | Pogue AI, Cui JG, Li YY, et al. Micro RNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation[J]. Neurosci Lett, 2010, 476(1): 18-22. | 
| 68. | Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation[J]. Trends Neurosci, 2009, 32(12): 638-647. | 
| 69. | Iyer A, Zurolo E, Prabowo A, et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response[J]. PLoS One, 2012, 7(9): e44789. | 
| 70. | Diaz Quiroz JF, Tsai E, Coyle M, et al. Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat[J]. Dis Model Mech, 2014, 7(6): 601-611. | 
| 71. | Agostini M, Tucci P, Steinert JR, et al. microRNA-34a regulates neurite outgrowth, spinal morphology, and function[J]. Proc Natl Acad Sci USA, 2011, 108(52): 21099-21104. | 
| 72. | Liu G, Detloff MR, Miller KN, et al. Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury[J]. Exp Neurol, 2012, 233(1): 447-456. | 
| 73. | Willemen HL, Huo XJ, Mao-Ying QL, et al. MicroRNA-124 as a novel treatment for persistent hyperalgesia[J]. J Neuroinflammation, 2012, 9: 143. | 
| 74. | Tan Y, Yang J, Xiang K, et al. Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signalling pathway[J]. Neurochem Res, 2015, 40(3): 550-560. | 
| 75. | Wu J, Qian J, Li C, et al. miR-129 regulates cell proliferation by downregulating Cdk6 expression[J]. Cell Cycle, 2010, 9(9): 1809-1818. | 
| 76. | Li XQ, Lv HW, Wang ZL, et al. MiR-27a ameliorates inflammatory damage to the blood-spinal cord barrier after spinal cord ischemia: reperfusion injury in rats by downregulating TICAM-2 of the TLR4 signaling pathway[J]. J Neuroinflammation, 2015, 12: 25. | 
| 77. | Hu J, Zeng L, Huang J, et al. miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats[J]. Brain Res, 2015, 1608: 191-202. | 
| 78. | Ma YD, Fang J, Liu H, et al. Increased HDAC3 and decreased miRNA-130a expression in PBMCs through recruitment HDAC3 in patients with spinal cord injuries[J]. Int J Clin Exp Pathol, 2015, 8(2): 1682-1689. | 
| 79. | Liu G, Keeler BE, Zhukareva V, et al. Cycling exercise affects the expression of apoptosis-associated microRNAs after spinal cord injury in rats[J]. Exp Neurol, 2010, 226(1): 200-206. | 
| 80. | Liu XJ, Zheng XP, Zhang R, et al. Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury[J]. Int J Clin Exp Pathol, 2015, 8(4): 3811-3818. | 
| 81. | Yu DS, Lv G, Mei XF, et al. MiR-200c regulates ROS-induced apoptosis in murine BV-2 cells by targeting FAP-1[J]. Spinal Cord, 2014, 53: 182-189. | 
| 82. | Liu D, Huang Y, Jia C, et al. Administration of antagomir-223 inhibits apoptosis, promotes angiogenesis and functional recovery in rats with spinal cord injury[J]. Cell Mol Neurobiol, 2015, 35(4): 483-491. | 
| 83. | Ning B, Gao L, Liu RH, et al. microRNAs in spinal cord injury: potential roles and therapeutic implications[J]. Int J Biol Sci, 2014, 10(9): 997-1006. | 
| 84. | Chakrabarti M, Banik NL, Ray SK. MiR-7-1 potentiated estrogen receptor agonists for functional neuroprotection in VSC4.1 motoneurons[J]. Neuroscience, 2014, 256: 322-333. | 
| 85. | Ouyang YB, Xu L, Lu Y, et al. Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia[J]. Glia, 2013, 61(11): 1784-1794. | 
| 86. | Hydbring P, Badalian-Very G. Clinical applications of microRNAs[J]. F1000Res, 2013, 2: 136. | 
| 87. | Broderick JA, Zamore PD. MicroRNA therapeutics[J]. Gene Ther, 2011, 18(12): 1104-1110. | 
| 88. | Hu JZ, Huang JH, Zeng L, et al. Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats[J]. J Neurotrauma, 2013, 30(15): 1349-1360. | 
| 89. | Ponomarev ED, Veremeyko T, Barteneva N, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway[J]. Nat Med, 2011, 17(1): 64-70. | 
| 90. | Chen X, Liang H, Zhang J, et al. Secreted microRNAs: a new form of intercellular communication[J]. Trends Cell Biol, 2012, 22(3): 125-132. | 
| 91. | Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis[J]. J Neurosci, 2012, 32(18): 6391-6410. | 
| 92. | Redell JB, Moore AN, Ward NH, et al. Human traumatic brain injury alters plasma microRNA levels[J]. J Neurotrauma, 2010, 27(12): 2147-2156. | 
| 93. | Balakathiresan N, Bhomia M, Chandran R, et al. MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury[J]. J Neurotrauma, 2012, 29(7): 1379-1387. | 
| 94. | Laterza OF, Lim L, Garrett-Engele PW, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury[J]. Clin Chem, 2009, 55(11): 1977-1983. | 
- 1. Han J, Lee Y, Yeom KH, et al. The Drosha-DGCR8 complex in primary microRNA processing[J]. Genes Dev, 2004, 18(24): 3016-3027.
- 2. Han J, Lee Y, Yeom KH, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex[J]. Cell, 2006, 125(5): 887-901.
- 3. Lund E, Güttinger S, Calado A, et al. Nuclear export of microRNA precursors[J]. Science, 2004, 303(5654): 95-98.
- 4. Shukla GC, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions[J]. Mol Cell Pharmacol, 2011, 3(3): 83-92.
- 5. Lee EJ, Baek M, Gusev Y, et al. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors[J]. RNA, 2008, 14(1): 35-42.
- 6. Li M, Marin-Muller C, Bharadwaj U, et al. MicroRNAs: control and loss of control in human physiology and disease[J]. World J Surg, 2009, 33(4): 667-684.
- 7. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay[J]. Nat Rev Genet, 2011, 12(2): 99-110.
- 8. Beitzinger M, Meister G. MicroRNAs: from decay to decoy[J]. Cell, 2010, 140(5): 612-614.
- 9. De Biase A, Knoblach SM, Di Giovanni S, et al. Gene expression profiling of experimental traumatic spinal cord injury as a function of distance from impact site and injury severity[J]. Physiol Genomics, 2005, 22(3): 368-381.
- 10. Liu NK, Wang XF, Lu QB, et al. Altered microRNA expression following traumatic spinal cord injury[J]. Exp Neurol, 2009, 219(2): 424-429.
- 11. Kosik KS. The neuronal microRNA system[J]. Nat Rev Neurosci, 2006, 7(12): 911-920.
- 12. Thomas M, Boname JM, Field S, et al. Down-regulation of NKG2D and NKp80 ligands by Kaposi's sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity[J]. Proc Natl Acad Sci USA, 2008, 105(5): 1656-1661.
- 13. Nakanishi K, Nakasa T, Tanaka N, et al. Responses of microRNAs 124a and 223 following spinal cord injury in mice[J]. Spinal Cord, 2010, 48(3): 192-196.
- 14. Jee MK, Jung JS, Choi JI, et al. MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury[J]. Brain, 2012, 135 (Pt 4): 1237-1252.
- 15. Jee MK, Jung JS, Im YB, et al. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord[J]. Hum Gene Ther, 2012, 23(5): 508-520.
- 16. Im YB, Jee MK, Choi JI, et al. Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord[J]. Cell Death Dis, 2012, 3: e426.
- 17. Strickland ER, Hook MA, Balaraman S, et al. MicroRNA dysregulation following spinal cord contusion: implications for neural plasticity and repair[J]. Neuroscience, 2011, 186: 146-160.
- 18. Hu JR, Lv GH, Yin BL. Altered microRNA expression in the ischemic-reperfusion spinal cord with atorvastatin therapy[J]. J Pharmacol Sci, 2013, 121(4): 343-346.
- 19. Yunta M, Nieto-Díaz M, Esteban FJ, et al. MicroRNA dysregulation in the spinal cord following traumatic injury[J]. PLoS One, 2012, 7(4): e34534.
- 20. Natera-Naranjo O, Aschrafi A, Gioio AE, et al. Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons[J]. RNA, 2010, 16(8): 1516-1529.
- 21. Zou D, Chen Y, Han Y, et al. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells[J]. Neural Regen Res, 2014, 9(12): 1241-1248.
- 22. Wu R, Wang N, Li M, et al. Experimental study on the facilitative effects of miR-125b on the differentiation of rat bone marrow mesenchymal stem cells into neuron-like cells[J]. Cell Biol Int, 2013, 37(8): 812-819.
- 23. Xu WW, Wang XY, Li P, et al. miR-124 regulates neural stem cells in the treatment of spinal cord injury[J]. Neurosci Lett, 2012, 529(1): 12-17.
- 24. Jovi?i? A, Roshan R, Moisoi N, et al. Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes[J]. J Neurosci, 2013, 33(12): 5127-5137.
- 25. Qian BJ, You L, Shang FF, et al. Vimentin regulates neuroplasticity in transected spinal cord rats associated with micRNA138[J]. Mol Neurobiol, 2015, 51(2): 437-447.
- 26. Wang CY, Yang SH, Tzeng SF. MicroRNA-145 as one negative regulator of astrogliosis[J]. Glia, 2015, 63(2): 194-205.
- 27. Hong P, Jiang M, Li H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse[J]. Glia, 2014, 62(12): 2044-2060.
- 28. Fitzpatrick JM, Anderson RC, McDermott KW. MicroRNA: key regulators of oligodendrocyte development and pathobiology[J]. Int J Biochem Cell Biol, 2015, 65: 134-138.
- 29. Hoffmann SA, Hos D, Küspert M, et al. Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes[J]. Development, 2014, 141(1): 39-50.
- 30. Lin ST, Huang Y, Zhang L, et al. MicroRNA-23a promotes myelination in the central nervous system[J]. Proc Natl Acad Sci USA, 2013, 110(43): 17468-17473.
- 31. Rowland JW, Hawryluk GW, Kwon B, et al. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon[J]. Neurosurg Focus, 2008, 25(5): E2.
- 32. Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade[J]. Acta Neurobiol Exp (Wars), 2011, 71(2): 281-299.
- 33. Silver J, Miller JH. Regeneration beyond the glial scar[J]. Nat Rev Neurosci, 2004, 5(2): 146-156.
- 34. Profyris C, Cheema SS, Zang D, et al. Degenerative and regenerative mechanisms governing spinal cord injury[J]. Neurobiol Dis, 2004, 15(3): 415-436.
- 35. Jones TB, McDaniel EE, Popovich PG. Inflammatory-mediated injury and repair in the traumatically injured spinal cord[J]. Curr Pharm Des, 2005, 11(10): 1223-1236.
- 36. Chen CZ, Schaffert S, Fragoso R, et al. Regulation of immune responses and tolerance: the microRNA perspective[J]. Immunol Rev, 2013, 253(1): 112-128.
- 37. Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1[J]. Proc Natl Acad Sci USA, 2008, 105(5): 1516-1521.
- 38. Aimone JB, Leasure JL, Perreau VM, et al. Spatial and temporal gene expression profiling of the contused rat spinal cord[J]. Exp Neurol, 2004, 189(2): 204-221.
- 39. Izumi B, Nakasa T, Tanaka N, et al. MicroRNA-223 expression in neutrophils in the early phase of secondary damage after spinal cord injury[J]. Neurosci Lett, 2011, 492(2): 114-118.
- 40. Guedes J, Cardoso AL, Pedroso de Lima MC. Involvement of microRNA in microglia-mediated immune response[J]. Clin Dev Immunol, 2013, 2013: 186872.
- 41. Hutchison ER, Kawamoto EM, Taub DD, et al. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes[J]. Glia, 2013, 61(7): 1018-1028.
- 42. Iliopoulos D, Jaeger SA, Hirsch HA, et al. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic Switch linking inflammation to cancer[J]. Mol Cell, 2010, 39(4): 493-506.
- 43. Li YY, Cui JG, Dua P, et al. Differential expression of miRNA-146a-regulated inflammatory genes in human primary neural, astroglial and microglial cells[J]. Neurosci Lett, 2011, 499(2): 109-113.
- 44. Sheedy FJ, Palsson-Mcdermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21[J]. Nat Immunol, 2010, 11(2): 141-147.
- 45. Young MR, Santhanam AN, Yoshikawa N, et al. Have tumor suppressor PDCD4 and its counteragent oncogenic miR-21 gone rogue?[J]. Mol Interv, 2010, 10(2): 76-79.
- 46. Liu XZ, Xu XM, Hu R, et al. Neuronal and glial apoptosis after traumatic spinal cord injury[J]. J Neurosci, 1997, 17(14): 5395-5406.
- 47. Wang, Z. MicroRNA: a matter of life or death[J]. World J Biol Chem, 2010, 1(4): 41-54.
- 48. Citron BA, Arnold PM, Sebastian C, et al. Rapid upregulation of caspase-3 in rat spinal cord after injury: mRNA, protein, and cellular localization correlates with apoptotic cell death[J]. Exp Neurol, 2000, 166(2): 213-226.
- 49. Casha S, Yu WR, Fehlings MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat[J]. Neuroscience, 2001, 103(1): 203-218.
- 50. Buller B, Liu X, Wang X, et al. MicroRNA-21 protects neurons from ischemic death[J]. FEBS J, 2010, 277(20): 4299-4307.
- 51. Hafez MM, Hassan ZK, Zekri AR, et al. MicroRNAs and metastasis-related gene expression in Egyptian breast cancer patients[J]. Asian Pac J Cancer Prev, 2012, 13(2): 591-598.
- 52. Qiu J, Nesic O, Ye Z, et al. Bcl-xL expression after contusion to the rat spinal cord[J]. J Neurotrauma, 2001, 18(11): 1267-1278.
- 53. Kaur P, Armugam A, Jeyaseelan K. MicroRNAs in Neurotoxicity[J]. J Toxicol, 2012, 2012: 870150.
- 54. Carrillo ED, Escobar Y, González G, et al. Posttranscriptional regulation of the β2-subunit of cardiac L-type Ca2+ channels by MicroRNAs during long-term exposure to isoproterenol in rats[J]. J Cardiovasc Pharmacol, 2011, 58(5): 470-478.
- 55. Santoscoy C, Ríos C, Franco-Bourland RE, et al. Lipid peroxidation by nitric oxide supplements after spinal cord injury: effect of antioxidants in rats[J]. Neurosci Lett, 2002, 330(1): 94-98.
- 56. Dharap A, Bowen K, Place R, et al. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome[J]. J Cereb Blood Flow Metab, 2009, 29(4): 675-687.
- 57. Bhalala OG, Srikanth M, Kessler JA. The emerging roles of microRNAs in CNS injuries[J]. Nat Rev Neurol, 2013, 9(6): 328-339.
- 58. Goldberg JL. How does an axon grow?[J]. Genes Dev, 2003, 17(8): 941-958.
- 59. Hong J, Zhang H, Kawase-Koga Y, et al. MicroRNA function is required for neurite outgrowth of mature neurons in the mouse postnatal cerebral cortex[J]. Front Cell Neurosci, 2013, 7: 151.
- 60. Yu YM, Gibbs KM, Davila J, et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish[J]. Eur J Neurosci, 2011, 33(9): 1587-1597.
- 61. Yu JY, Chung KH, Deo M, et al. MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation[J]. Exp Cell Res, 2008, 314(14): 2618-2633.
- 62. Di Giovanni S, De Biase A, Yakovlev A, et al. In vivo and in vitro characterization of novel neuronal plasticity factors identified following spinal cord injury[J]. J Biol Chem, 2005, 280(3): 2084-2091.
- 63. Dugas JC, Cuellar TL, Scholze A, et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination[J]. Neuron, 2010, 65(5): 597-611.
- 64. Shin D, Shin JY, Mcmanus MT, et al. Dicer ablation in oligodendrocytes provokes neuronal impairment in mice[J]. Ann Neurol, 2009, 66(6): 843-857.
- 65. Sofroniew MV. Reactive astrocytes in neural repair and protection[J]. Neuroscientist, 2005, 11(5): 400-407.
- 66. Bhalala OG, Pan L, Sahni V, et al. microRNA-21 regulates astrocytic response following spinal cord injury[J]. J Neurosci, 2012, 32(50): 17935-17947.
- 67. Pogue AI, Cui JG, Li YY, et al. Micro RNA-125b (miRNA-125b) function in astrogliosis and glial cell proliferation[J]. Neurosci Lett, 2010, 476(1): 18-22.
- 68. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation[J]. Trends Neurosci, 2009, 32(12): 638-647.
- 69. Iyer A, Zurolo E, Prabowo A, et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response[J]. PLoS One, 2012, 7(9): e44789.
- 70. Diaz Quiroz JF, Tsai E, Coyle M, et al. Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat[J]. Dis Model Mech, 2014, 7(6): 601-611.
- 71. Agostini M, Tucci P, Steinert JR, et al. microRNA-34a regulates neurite outgrowth, spinal morphology, and function[J]. Proc Natl Acad Sci USA, 2011, 108(52): 21099-21104.
- 72. Liu G, Detloff MR, Miller KN, et al. Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury[J]. Exp Neurol, 2012, 233(1): 447-456.
- 73. Willemen HL, Huo XJ, Mao-Ying QL, et al. MicroRNA-124 as a novel treatment for persistent hyperalgesia[J]. J Neuroinflammation, 2012, 9: 143.
- 74. Tan Y, Yang J, Xiang K, et al. Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signalling pathway[J]. Neurochem Res, 2015, 40(3): 550-560.
- 75. Wu J, Qian J, Li C, et al. miR-129 regulates cell proliferation by downregulating Cdk6 expression[J]. Cell Cycle, 2010, 9(9): 1809-1818.
- 76. Li XQ, Lv HW, Wang ZL, et al. MiR-27a ameliorates inflammatory damage to the blood-spinal cord barrier after spinal cord ischemia: reperfusion injury in rats by downregulating TICAM-2 of the TLR4 signaling pathway[J]. J Neuroinflammation, 2015, 12: 25.
- 77. Hu J, Zeng L, Huang J, et al. miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats[J]. Brain Res, 2015, 1608: 191-202.
- 78. Ma YD, Fang J, Liu H, et al. Increased HDAC3 and decreased miRNA-130a expression in PBMCs through recruitment HDAC3 in patients with spinal cord injuries[J]. Int J Clin Exp Pathol, 2015, 8(2): 1682-1689.
- 79. Liu G, Keeler BE, Zhukareva V, et al. Cycling exercise affects the expression of apoptosis-associated microRNAs after spinal cord injury in rats[J]. Exp Neurol, 2010, 226(1): 200-206.
- 80. Liu XJ, Zheng XP, Zhang R, et al. Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury[J]. Int J Clin Exp Pathol, 2015, 8(4): 3811-3818.
- 81. Yu DS, Lv G, Mei XF, et al. MiR-200c regulates ROS-induced apoptosis in murine BV-2 cells by targeting FAP-1[J]. Spinal Cord, 2014, 53: 182-189.
- 82. Liu D, Huang Y, Jia C, et al. Administration of antagomir-223 inhibits apoptosis, promotes angiogenesis and functional recovery in rats with spinal cord injury[J]. Cell Mol Neurobiol, 2015, 35(4): 483-491.
- 83. Ning B, Gao L, Liu RH, et al. microRNAs in spinal cord injury: potential roles and therapeutic implications[J]. Int J Biol Sci, 2014, 10(9): 997-1006.
- 84. Chakrabarti M, Banik NL, Ray SK. MiR-7-1 potentiated estrogen receptor agonists for functional neuroprotection in VSC4.1 motoneurons[J]. Neuroscience, 2014, 256: 322-333.
- 85. Ouyang YB, Xu L, Lu Y, et al. Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia[J]. Glia, 2013, 61(11): 1784-1794.
- 86. Hydbring P, Badalian-Very G. Clinical applications of microRNAs[J]. F1000Res, 2013, 2: 136.
- 87. Broderick JA, Zamore PD. MicroRNA therapeutics[J]. Gene Ther, 2011, 18(12): 1104-1110.
- 88. Hu JZ, Huang JH, Zeng L, et al. Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats[J]. J Neurotrauma, 2013, 30(15): 1349-1360.
- 89. Ponomarev ED, Veremeyko T, Barteneva N, et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway[J]. Nat Med, 2011, 17(1): 64-70.
- 90. Chen X, Liang H, Zhang J, et al. Secreted microRNAs: a new form of intercellular communication[J]. Trends Cell Biol, 2012, 22(3): 125-132.
- 91. Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis[J]. J Neurosci, 2012, 32(18): 6391-6410.
- 92. Redell JB, Moore AN, Ward NH, et al. Human traumatic brain injury alters plasma microRNA levels[J]. J Neurotrauma, 2010, 27(12): 2147-2156.
- 93. Balakathiresan N, Bhomia M, Chandran R, et al. MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury[J]. J Neurotrauma, 2012, 29(7): 1379-1387.
- 94. Laterza OF, Lim L, Garrett-Engele PW, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury[J]. Clin Chem, 2009, 55(11): 1977-1983.
- 
	                            Previous Article物理因子對神經干細胞分化影響的研究進展
- 
                            Next Article腫瘤患者希望水平影響因素研究進展
 
        

 
                