1. |
Graimann B, Allison B Z, Pfurtscheller G. Brain-computer interfaces: Revolutionizing human-computer interaction. Berlin: Springer Science & Business Media, 2010: 2-18.
|
2. |
Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng, 2000, 8(2): 164-173.
|
3. |
Wolpaw J R, Wolpaw E W. Brain-computer interfaces: something new under the sun// Wolpaw J R, Wolpaw E W. Brain-computer interfaces: principles and practice. Oxford: Oxford University Press, 2012: 3-12.
|
4. |
Ramsey N F, Millán J R. Brain-computer interfaces. Amsterdam: Elsevier, 2010: 1-16.
|
5. |
Zhang Z, Chen Y, Zhao X, et al. A review of ethical considerations for the medical applications of brain-computer interfaces. Cogn Neurodyn, 2024, 18(6): 3603-3614.
|
6. |
張喆, 趙旭, 馬藝昕, 等. 腦機接口技術倫理規范考量. 生物醫學工程學雜志, 2023, 40(2): 358-364.
|
7. |
張喆, 陳衍肖, 趙旭, 等. 植入式腦機接口醫學應用倫理規范考量. 生物醫學工程學雜志, 2024, 41(1): 177-183.
|
8. |
Bergeron D, Iorio-Morin C, Bonizzato M, et al. Use of invasive brain-computer interfaces in pediatric neurosurgery: technical and ethical considerations. J Child Neurol, 2023, 38(3): 223-238.
|
9. |
Klein E. Ethics and the emergence of brain-computer interface medicine. Handb Clin Neurol, 2020, 168: 329-338.
|
10. |
Burwell S, Sample M, Racine E. Ethical aspects of brain-computer interfaces: a scoping review. BMC Med Ethics, 2017, 18: 1-11.
|
11. |
Keskinbora K H. Medical ethics considerations on artificial intelligence. J Clin Neurosci, 2019, 64: 277-282.
|
12. |
Wang X Q, Sun H Q, Si J Y, et al. Challenges and suggestions of ethical review on clinical research involving brain-computer interfaces. Chin Med Sci J, 2024, 39(2): 131-139.
|
13. |
呂曉彤, 丁鵬, 李思語, 等. 腦機接口人因工程及應用: 以人為中心的腦機接口設計和評價方法. 生物醫學工程學雜志, 2021, 38(2): 210-223.
|
14. |
Lyu X, Ding P, Li S, et al. Human factors engineering of BCI: an evaluation for satisfaction of BCI based on motor imagery. Cogn Neurodyn, 2023, 17(1): 105-118.
|
15. |
Santos M. Research on deep learning model for real-time data processing of brain-computer interface system// 2024 International Conference on Computing, Robotics and System Sciences (ICRSS). Sanya: IEEE, 2024: 15-20.
|
16. |
Zhang X, Ma Z, Zheng H, et al. The combination of brain-computer interfaces and artificial intelligence: applications and challenges. Ann Transl Med, 2020, 8(11): 712-722.
|
17. |
Hu L, Zhang Z. Evolving EEG signal processing techniques in the age of artificial intelligence. Brain Sci Adv, 2020, 6(3): 159-161.
|
18. |
Bajaj V, Sinha G R. Artificial intelligence-based brain-computer interface. Amsterdam: Elsevier, 2022: 180-205.
|
19. |
Pan H, Ding P, Wang F, et al. Comprehensive evaluation methods for translating BCI into practical applications: usability, user satisfaction, and usage of online BCI systems. Front Hum Neurosci, 2024, 18: 248-257.
|
20. |
Amin S U, Alsulaiman M, Muhammad G, et al. Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. FGCS, 2019, 101: 542-554.
|
21. |
Moses D A, Metzger S L, Liu J R, et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N Engl J Med, 2021, 385(3): 217-227.
|
22. |
Willett F R, Avansino D T, Hochberg L R, et al. High-performance brain-to-text communication via handwriting. Nature, 2021, 593(7858): 249-254.
|
23. |
Willett F R, Kunz E M, Fan C, et al. A high-performance speech neuroprosthesis. Nature, 2023, 620(7976): 1031-1036.
|
24. |
Metzger S L, Littlejohn K T, Silva A B, et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature, 2023, 620(7976): 1037-1046.
|
25. |
Li F, He F, Wang F, et al. A novel simplified convolutional neural network classification algorithm of motor imagery EEG signals based on deep learning. Appl Sci, 2020, 10(5): 354-366.
|
26. |
Tortora S, Ghidoni S, Chisari C, et al. Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network. J Neural Eng, 2020, 17(4): 158-169.
|
27. |
Lee D Y, Lee M, Lee S W. Decoding imagined speech based on deep metric learning for intuitive BCI communication. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 1363-1374.
|
28. |
Bu Y, Harrington D L, Lee R R, et al. Magnetoencephalogram-based brain–computer interface for hand-gesture decoding using deep learning. Cereb Cortex, 2023, 33(14): 8942-8955.
|
29. |
Zhi H, Yu Z, Yu T, et al. A multi-domain convolutional neural network for EEG-based motor imagery decoding. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 3988-3998.
|
30. |
Su J, An S, Wang G, et al. Transformer-based multi-scale 3D convolutional network for motor imagery classification. IEEE Sens J, 2025, 10(6): 221-229.
|
31. |
De Venuto D, Mezzina G. A single-trial P300 detector based on symbolized EEG and autoencoded-(1D) CNN to improve ITR performance in BCIs. Sensors, 2021, 21(12): 3961-3968.
|
32. |
Guney O B, Oblokulov M, Ozkan H. A deep neural network for SSVEP-based brain-computer interfaces. IEEE Trans Biomed Eng, 2021, 69(2): 932-944.
|
33. |
Wang H, Pei Z, Xu L, et al. Performance enhancement of P300 detection by multiscale-CNN. IEEE Trans Instrum Meas, 2021, 70: 1-12.
|
34. |
Rostami E, Ghassemi F, Tabanfar Z. Improving the classification of real-world SSVEP data in brain-computer interface speller systems using deep convolutional neural networks. Front Biomed Technol, 2022, 9(4): 248-254.
|
35. |
Lampe T, Fiederer L D J, Voelker M, et al. A brain-computer interface for high-level remote control of an autonomous, reinforcement-learning-based robotic system for reaching and grasping// Proceedings of the 19th International Conference on Intelligent User Interfaces. Haifa: ACM, 2014: 83-88.
|
36. |
Roy A M. Adaptive transfer learning-based multiscale feature fused deep convolutional neural network for EEG MI multiclassification in brain-computer interface. Eng Appl Artif Intell, 2022, 116: 347-359.
|
37. |
Nallani S V C, Ramachandran G. RLEEGNet: Integrating brain-computer interfaces with adaptive AI for intuitive responsiveness and high-accuracy motor imagery classification. arXiv, 2024: 2402.09465v1.
|
38. |
Akuthota S, Janapati R C, Kumar K R, et al. Enhancing real-time cursor control with motor imagery and deep neural networks for brain–computer interfaces. Information, 2024, 15(11): 702-710.
|
39. |
Xia Y, Chen J, Li J, et al. A deep-learning empowered, real-time processing platform of fNIRS/DOT for brain-computer interfaces and neurofeedback. IEEE Trans Neural Syst Rehabil Eng, 2025, 33: 1220-1230.
|
40. |
Cao Y, Gao S, Yu H, et al. A motor imagery classification model based on hybrid brain-computer interface and multitask learning of electroencephalographic and electromyographic deep features. Front Physiol, 2024, 15: 548-557.
|
41. |
Lee J, Won K, Kwon M, et al. CNN with large data achieves true zero-training in online P300 brain-computer interface. IEEE Access, 2020, 8: 74385-74400.
|
42. |
Hosman T, Pun T K, Kapitonava A, et al. Months-long high-performance fixed LSTM decoder for cursor control in human intracortical brain-computer interfaces// 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER). Baltimore: IEEE, 2023: 1-5.
|
43. |
Fahimi F, Zhang Z, Goh W B, et al. Towards EEG generation using GANs for BCI applications// 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). Chicago: IEEE, 2019: 1-4.
|
44. |
Jin C, Song A H, Kim S E. Two-phase multitask autoencoder-based deep learning framework for subject-independent EEG motor imagery classification. IEEE Access, 2024, 12: 77356-77367.
|
45. |
Zhang J, Li K, Yang B, et al. Local and global convolutional transformer-based motor imagery EEG classification. Front Neurosc, 2023, 17: 1219-1228.
|
46. |
Xia K, Duch W, Sun Y, et al. Privacy-preserving brain–computer interfaces: A systematic review. IEEE Trans Comput Soc Syst, 2022, 10(5): 2312-2324.
|
47. |
Naufel S, Klein E. Brain–computer interface (BCI) researcher perspectives on neural data ownership and privacy. J Neural Eng, 2020, 17(1): 156-167.
|
48. |
Lyreskog D M, Zohny H, Singh I, et al. The ethics of thinking with machines: Brain-computer interfaces in the era of artificial intelligence. Int J Chin Comp Philos Med, 2023, 21(2): 514-522.
|
49. |
Cao Z. A review of artificial intelligence for EEG‐based brain? computer interfaces and applications. BSA, 2020, 6(3): 162-170.
|
50. |
Klein E, Nam C S. Neuroethics and brain-computer interfaces (BCIs). Brain-Comp Inter, 2016, 3(3): 123-125.
|
51. |
Cassinadri G, Ienca M. Non-voluntary BCI explantation: assessing possible neurorights violations in light of contrasting mental ontologies. J Med Ethics, 2024, 40(3): 226-235.
|
52. |
Ayyalasomayajula M M T. Ethical considerations in AI implementation for neurodegenerative disease diagnosis and treatment// Integrating Neuroimaging, Computational Neuroscience, and Artificial Intelligence. Boca Raton: CRC Press, 2025: 105-127.
|
53. |
Onciul R, Tataru C I, Dumitru A V, et al. Artificial intelligence and neuroscience: transformative synergies in brain research and clinical applications. J Clin Med, 2025, 14(2): 550-559.
|
54. |
Ma W, Ma T, Organisciak D, et al. The progress and prospects of data capital for zero-shot deep brain–computer interfaces. Electronics, 2025, 14(3): 508-516.
|
55. |
Liu M, Ning Y, Teixayavong S, et al. A translational perspective towards clinical AI fairness. NPJ Digit Med, 2023, 6(1): 172-181.
|
56. |
Guan J. Artificial intelligence in healthcare and medicine: promises, ethical challenges and governance. Chin Med Sci J, 2019, 34(2): 76-83.
|
57. |
V?rbu K, Muhammad N, Muhammad Y. Past, present, and future of EEG-based BCI applications. Sensors, 2022, 22(9): 3331-3340.
|
58. |
Elashmawi W H, Ayman A, Antoun M, et al. A comprehensive review on brain–computer interface (BCI)-based machine and deep learning algorithms for stroke rehabilitation. Appl Sci, 2024, 14(14): 6347-6357.
|
59. |
Dinker N. Artificial intelligence and inequality: examining the social divides created by technological advancements. IJISEM, 2024, 15(8): 228-236.
|
60. |
Islam M, Vashishat A, Kumar M. Advancements beyond limb loss: exploring the intersection of AI and BCI in prosthetic evaluation. Curr Pharm Des, 2024, 30(35): 2749-2752.
|
61. |
Zhang H. Neurotechnology and ethics: Reflections on brain-computer interface technology. Sci Prog Hum, 2025, 1(1): 14-19.
|
62. |
Phillips V. From neurons to networks: ethical dimensions of AI-infused neural interfaces. AI & Ethics, 2025, 5: 3531-3536.
|
63. |
Zeng Y, Sun K, Lu E. Declaration on the ethics of brain–computer interfaces and augment intelligence. AI & Ethics, 2021, 1(3): 209-211.
|
64. |
Conrad C, Heggie C. Legal and ethical challenges raised by advances in brain-computer interface technology. Can J Law Tech, 2024, 21(2): 201-211.
|
65. |
Yang H, Jiang L. Regulating neural data processing in the age of BCIs: ethical concerns and legal approaches. Digit Health, 2025, 11: 456-467.
|