1. |
Li K, Huang W, Gao W, et al. An electroencephalography-based brain-computer interface for emotion regulation with virtual reality neurofeedback. IEEE Trans Cogn Dev Syst, 2024, 16(4): 1405-1417.
|
2. |
Houssein E H, Hammad A, Ali A A, et al. Human emotion recognition from EEG-based brain-computer interface using machine learning: a comprehensive review. Neural Comput Appl, 2022, 34(15): 12527-12557.
|
3. |
Xu J, Hu Z, Zou J, et al. Intelligent emotion detection method based on deep learning in medical and health data. IEEE Access, 2020, 8: 3802-3811.
|
4. |
Yu M, Xiao S, Hua M, et al. EEG-based emotion recognition in an immersive virtual reality environment: from local activity to brain network features. Biomedical Signal Processing and Control, 2022, 72(Part A): 103349.
|
5. |
張天恒,王磊,郭苗苗,等. 虛擬現實視覺體驗對腦功能網絡的影響. 生物醫學工程學雜志, 2020, 37(2): 251-261.
|
6. |
Liu D, Dai W, Zhang H, et al. Brain-machine coupled learning method for facial emotion recognition. IEEE Trans Pattern Anal Mach Intell, 2023, 45(9): 10703-10717.
|
7. |
Li W, Xue J, Tan R, et al. Global-local-feature-fused driver speech emotion detection for intelligent cockpit in automated driving. IEEE Trans Intell Veh, 2023, 8(4): 2684-2697.
|
8. |
Huang Y, Wen H, Qing L, et al. Emotion recognition based on body and context fusion in the wild//2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal: IEEE, 2021: 3602-3610.
|
9. |
Koelstra S, Muhl C, Soleymani M, et al. DEAP: a database for emotion analysis using physiological signals. IEEE Trans Affect Comput, 2012, 3(1): 18-31.
|
10. |
Zhang T, El Ali A, Wang C, et al. Weakly-supervised learning for fine-grained emotion recognition using physiological signals. IEEE Trans Affect Comput, 2023, 14(3): 2304-2322.
|
11. |
Singh U, Shaw R, Patra B K, et al. A data augmentation and channel selection technique for grading human emotions on DEAP dataset. Biomed Signal Process Control, 2023, 79: 104060.
|
12. |
Gu Y, Zhong X, Qu C, et al. A domain generative graph network for EEG-based emotion recognition. IEEE J Biomed Health Inform, 2023, 27(5): 2377-2386.
|
13. |
Yang K, Yao Z, Zhang K, et al. Automatically extracting and utilizing EEG channel importance based on graph convolutional network for emotion recognition. IEEE J Biomed Health Inform, 2024, 28(8): 4588-4598.
|
14. |
Zhang Y, Liu H, Wang D, et al. Cross-modal credibility modelling for EEG-based multimodal emotion recognition. J Neural Eng, 2024, 21(2): 1-15.
|
15. |
Hou K, Zhang X, Yang Y, et al. Emotion recognition from multimodal physiological signals via discriminative correlation fusion with a temporal alignment mechanism. IEEE Trans Cybern, 2024, 54(4): 3079-3092.
|
16. |
Zhang X, Liu J, Shen J, et al. Emotion recognition from multimodal physiological signals using a regularized deep fusion of kernel machine. IEEE Trans Cybern, 2021, 51(9): 4386-4399.
|
17. |
Skaramagkas V, Giannakakis G, Ktistakis E, et al. Review of eye tracking metrics involved in emotional and cognitive processes. IEEE Rev Biomed Eng, 2023, 16: 260-277.
|
18. |
Lu Y, Zheng W L, Li B, et al. Combining eye movements and EEG to enhance emotion recognition//Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI). Buenos Aires: AAAI Press, 2015: 1170-1176.
|
19. |
Wu X, Zheng W L, Li Z Y, et al. Investigating EEG-based functional connectivity patterns for multimodal emotion recognition. J Neural Eng, 2022, 19(1): 016012.
|
20. |
Eysenck S B G, Eysenck H J, Barrett P. A revised version of the psychoticism scale. Pers Individ Differ, 1985, 6(1): 21-29.
|
21. |
Zheng W L, Lu B L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans Auton Ment Dev, 2015, 7(3): 162-175.
|
22. |
Yan Y, Wu X, Li C, et al. Topological EEG nonlinear dynamics analysis for emotion recognition. IEEE Trans Cogn Dev Syst, 2023, 15(2): 625-638.
|
23. |
Hatipoglu Yilmaz B, Kose C. A novel signal to image transformation and feature level fusion for multimodal emotion recognition. Biomed Tech, 2021, 66(4): 353-362.
|
24. |
Huang Z T, Ma Y H, Wang R R, et al. A model for EEG-based emotion recognition: CNN-Bi-LSTM with attention mechanism. Electronics, 2023, 12(14): 3188.
|
25. |
Li G, Yuan B, Ouyang D, et al. Emotion recognition based on selected EEG signals by common spatial pattern. IEEE Sens J, 2024, 24(6): 8414-8426.
|
26. |
Lawhern V J, Solon A J, Waytowich N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J Neural Eng, 2018, 15(5): 056013.
|
27. |
Zhong P, Wang D, Miao C. EEG-based emotion recognition using regularized graph neural networks. IEEE Trans Affect Comput, 2022, 13(3): 1290-1301.
|
28. |
Ma R, Yu T, Zhong X, et al. Capsule network for ERP detection in brain-computer interface. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 718-730.
|
29. |
Liu Q, Wu H, Zhang H, et al. Spatial-temporal Transformers for EEG emotion recognition//Proceedings of the 6th International Conference on Advances in Artificial Intelligence (ICAAI 2022). Xi’an: Northwestern Polytechnical University Press, 2022: 116-120.
|
30. |
Song Y, Zheng Q, Liu B, et al. EEG conformer: convolutional transformer for EEG decoding and visualization. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 710-719.
|
31. |
Qiu J L, Liu H, Lu B L. Multi-view emotion recognition using deep canonical correlation analysis//Proceedings of the 25th International Conference on Neural Information Processing (ICONIP 2018). Siem Reap: Springer, 2018: 221-231.
|
32. |
Lan Y T, Liu W, Lu B L. Multimodal emotion recognition using deep generalized canonical correlation analysis with an attention mechanism//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Virtual Conference: IEEE, 2021: 1-6.
|
33. |
Zhao Z W, Liu W, Lu B L. Multimodal emotion recognition using a modified dense co-attention symmetric network//Proceedings of the International IEEE/EMBS Conference on Neural Engineering (CNE). Virtual Conference: IEEE, 2021: 73-76.
|
34. |
Zhou S, Huang D, Liu C, et al. Objectivity meets subjectivity: a subjective and objective feature fused neural network for emotion recognition. Appl Soft Comput, 2022, 122: 108849.
|
35. |
Fu B L, Gu C R, Fu M, et al. A novel feature fusion network for multimodal emotion recognition from EEG and eye movement signals. Front Neurosci, 2023, 17: 1234162.
|
36. |
Yin J L, Wu M C, Yang Y, et al. Research on multimodal emotion recognition based on fusion of electroencephalogram and electrooculography. IEEE Trans Instrum Meas, 2024, 73: 1-12.
|