1. |
World Health Organization. Working for a brighter, healthier future: how WHO improves health and promotes well-being for the world’s adolescents. Geneva, Switzerland, World Health Organization, 2024: 1-9.
|
2. |
陶芳標. 構建面向健康中國2030青少年健康促進體系. 中國學校衛生, 2023, 44(1): 1-5.
|
3. |
Dop D, P?dureanu V, P?dureanu R, et al. Risk factors involved in postural disorders in children and adolescents. Life, 2024, 14(11): 1463.
|
4. |
魏銘, 牛雪松, 吳昊. 體醫融合視域下青少年體態異常防治的現實路徑. 沈陽體育學院學報, 2022, 41(4): 57-63.
|
5. |
Rob C F, Hossain M D J, Kang X S. Management of post-traumatic genu valgus deformity in adolescent by proximal tibial corticotomy with bone lengthening by ilizarov method: a case report. MOJ Orthop Rheumatol, 2023, 15(6): 219-223.
|
6. |
Buchan S, Bennet S, Barry M. Genu valgum in children. Orthopaedics and Trauma, 2022, 36(6): 311-316.
|
7. |
Jamil K, Chew W Y, Bohari N E, et al. Knee measurements among children with normal alignment, physiologic and pathologic bowing aged 0-3 years old: a systematic review. Journal of Pediatric Orthopaedics B, 2022, 31(2): 105-113.
|
8. |
Coppa V, Marinelli M, Procaccini R, et al. Coronal plane deformity around the knee in the skeletally immature population: a review of principles of evaluation and treatment. World Journal of Orthopedics, 2022, 13(5): 427-443.
|
9. |
Moon S H, Kwon S S, Park M S, et al. Change of limb align-ment in Korean children and adolescents with idiopathic genu valgum. Medicine, 2021, 100(45): e27637.
|
10. |
Di Gennaro G L, Trisolino G, Stallone S, et al. Guided growth technique for epiphysiodesis and hemiepiphysiodesis: safety and performance evaluation. Children, 2023, 11(1): 49.
|
11. |
Sanchis G J B, Nascimento J A S D, Santana R C, et al. Biomechanical factors associated with patellofemoral pain in children and adolescents. Scientific Reports, 2024, 14(1): 15490.
|
12. |
Khou S B, Saki F, Tahayori B. Muscle activation in the lower limb muscles in individuals with dynamic knee valgus during single-leg and overhead squats: a meta-analysis study. BMC Musculoskeletal Disorders, 2024, 25(1): 652.
|
13. |
Lee S H, Choi Y, Lee J, et al. Valgus arthritic knee responds better to conservative treatment than the varus arthritic knee. Medicine, 2023, 59(4): 779.
|
14. |
顧耀東, 徐異寧. 智能化兒童青少年體態健康評估預測模型開發——以小學齡兒童青少年膝關節內外翻為例. 上海體育大學學報, 2025, 49(4): 9-19.
|
15. |
Ranade A S, Oka G A, Belthur M V, et al. An international consensus on evaluation and management of idiopathic genu valgum: a modified delphi survey. Journal of Pediatric Orthopaedics, 2025, 45(5): 274-280.
|
16. |
房依婷, 黃雨琦, 于幸, 等. 雙任務范式在帕金森發病早期篩查中的應用進展. 中國療養醫學, 2023, 32(6): 591-594.
|
17. |
Kirby J C, Jones H, Johnson B L, et al. Genu valgum in pediatric patients presenting with patellofemoral instability. Journal of Pediatric Orthopaedics, 2024, 44(3): 168-173.
|
18. |
Meng D, He S, Wei M, et al. Enhanced predicting genu valgum through integrated feature extraction: utilizing ChatGPT with body landmarks. Biomedical Signal Processing and Control, 2024, 97: 106676.
|
19. |
Munusamy V, Senthilkumar S. Emerging trends in gait recognition based on deep learning: a survey. Peer J Comput Sci, 2024, 10: e2158.
|
20. |
Fan C, Hou S, Huang Y, et al. Exploring deep models for practical gait recognition. arXiv preprint, 2023, arXiv: 2303.03301.
|
21. |
Franco A, Russo M, Amboni M, et al. The role of deep learning and gait analysis in Parkinson’s disease: a systematic review. Sensors, 2024, 24(18): 5957.
|
22. |
Aghababa M P, Andrysek J. Exploration and demonstration of explainable machine learning models in prosthetic rehabilitation-based gait analysis. PloS One, 2024, 19(4): e0300447.
|
23. |
Jeswani J, Shinde S, Singh K, et al. Innovative approaches in gait analysis for genu valgum using machine learning techniques. TechRxiv, 2024, DOI: 10.36227/techrxiv.173194435.53042495/v1.
|
24. |
Bilal M, Jianbiao H, Mushtaq H, et al. GaitSTAR: spatial–temporal attention-based feature-reweighting architecture for human gait recognition. Mathematics, 2024, 12(16): 2458.
|
25. |
Cui Y, Kang Y. Multi-modal gait recognition via effective spatial-temporal feature fusion//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada: IEEE, 2023: 17949-17957.
|
26. |
Nie X, Chen X, Jin H, et al. Triplet attention transformer for spatiotemporal predictive learning//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Hawaii: IEEE, 2024: 7036-7045.
|
27. |
Hu Y, Yang J, Wang Y, et al. Multi-modal variable-channel spatial-temporal semantic action recognition network//International Conference of Pioneering Computer Scientists, Engineers and Educators (ICPCSEE 2024). Singapore: Springer Nature Singapore, 2024: 139-153.
|
28. |
Junaid M I, Prakash A J, Ari S. Human gait recognition using joint spatiotemporal modulation in deep convolutional neural networks. Journal of Visual Communication and Image Representation, 2024, 105: 104322.
|
29. |
Saoud L S, Hussain I. TempoNet: empowering long-term knee joint angle prediction with dynamic temporal attention in exoskeleton control//Proceedings of the 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), Austin, USA: IEEE, 2023: 1-8.
|
30. |
Ding G, Georgilas I, Plummer A. A deep learning model with a self-attention mechanism for leg joint angle estimation across varied locomotion modes. Sensors, 2023, 24(1): 211.
|
31. |
Yan M, Guo M, Sun J, et al. Gait recognition in different terrains with IMUs based on attention mechanism feature fusion method. Neural Processing Letters, 2023, 55(8): 10215-10234.
|
32. |
Wang M, Guo X, Lin B, et al. Dygait: exploiting dynamic representations for high-performance gait recognition//Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris: IEEE, 2023: 13424-13433.
|
33. |
Xu H, Zhang C, Wu Z, et al. PSGait: gait recognition using parsing skeleton. arXiv preprint, 2025, arXiv: 2503.12047.
|
34. |
Salcedo E. Computer vision-based gait recognition on the edge: a survey on feature representations, models, and architectures. Journal of Imaging, 2024, 10(12): 326.
|
35. |
Rajpurkar P, Chen E, Banerjee O, et al. AI in health and medicine. Nature Medicine, 2022, 28(1): 31-38.
|
36. |
Ng S Y. Anonychia. The Journal of Pediatrics, 2023, 263: 113664.
|
37. |
Yan J, Zheng B, Xu H, et al. Making pre-trained language models great on tabular prediction. arXiv preprint, 2024, arXiv: 2403.01841.
|
38. |
An Y, Song C. Multiscale dynamic attention and hierarchical spatial aggregation for few-shot object detection. Applied Sciences, 2025, 15(3): 1381.
|
39. |
Hong S B, Kim Y H, Nam S H, et al. S3D: squeeze and excitation 3D convolutional neural networks for a fall detection system. Mathematics, 2022, 10(3): 328.
|
40. |
Woo S, Park J, Lee J, et al. CBAM: convolutional block attention module. arXiv preprint, 2018, arXiv: 1807.06521.
|
41. |
Gao Z, Wang Q, Zhang B, et al. Temporal-attentive covariance pooling networks for video recognition. Advances in Neural Information Processing Systems, 2021, 34: 13587-13598.
|
42. |
Sun Y, Long H, Feng X, et al. GaitASMS: gait recognition by adaptive structured spatial representation and multi-scale temporal aggregation. Neural Computing and Applications, 2024, 36(13): 7057-7069.
|
43. |
Manoharan J, Sivagnanam Y. A novel human action recognition model by Grad-CAM visualization with multi-level feature extraction using global average pooling with sequence modeling by bidirectional gated recurrent units. International Journal of Computational Intelligence Systems, 2025, 18(1): 1-20.
|