1. |
Wang W, Lo A C Y. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci, 2018, 19(6): 1816.
|
2. |
Gerendas B S, Bogunovic H, Sadeghipour A, et al. Computational image analysis for prognosis determination in DME. Vision Res, 2017, 139: 204-210.
|
3. |
Deka A, Sarma K K. SVD and PCA features for ANN based detection of diabetes using retinopathy// Proceedings of the CUBE International Information Technology Conference. New York: Association for Computing Machinery, 2012: 38-41.
|
4. |
Roychowdhury S, Koozekanani D D, Parhi K K. DREAM: Diabetic retinopathy analysis using machine learning. IEEE J Biomed Health Inform, 2014, 18(5): 1717-1728.
|
5. |
Sun G, Liu X, Yu X. Multi-path cascaded U-net for vessel segmentation from fundus fluorescein angiography sequential images. Comput Methods Programs Biomed, 2021, 211: 106422.
|
6. |
Chen M, Jin K, You K, et al. Automatic detection of leakage point in central serous chorioretinopathy of fundus fluorescein angiography based on time sequence deep learning. Graefes Arch Clin Exp Ophthalmol, 2021, 259(8): 2401-2411.
|
7. |
Gao Z, Jin K, Yan Y, et al. End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning. Graefes Arch Clin Exp Ophthalmol, 2022, 260(5): 1663-1673.
|
8. |
Chen Z M, Wei X S, Wang P, et al. Multi-label image recognition with graph convolutional networks// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2019: 5177-5186.
|
9. |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation// Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer, 2015: 234-241.
|
10. |
Wang S, Zuo Y, Wang N, et al. Fundus fluorescence angiography in diagnosing diabetic retinopathy. Pak J Med Sci, 2017, 33(6): 1328.
|
11. |
Liu X, Xie J, Hou J, et al. D-GET: group-enhanced transformer for diabetic retinopathy severity classification in fundus fluorescein angiography. J Med Syst, 2025, 49(1): 34.
|
12. |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2016: 2818-2826.
|
13. |
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection// Proceedings of the IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society, 2017: 2980-2988.
|
14. |
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.
|
15. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2016: 770-778.
|
16. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv, 2015: 1409.1556.
|
17. |
Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2017: 4700-4708.
|
18. |
Tan M, Pang R, Le Q V. EfficientDet: scalable and efficient object detection// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2020: 10781-10790.
|
19. |
Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows// Proceedings of the IEEE/CVF International Conference on Computer Vision. Los Alamitos: IEEE Computer Society, 2021: 10012-10022.
|
20. |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv, 2020: 2010.11929.
|
21. |
Qiu Z, Hu Y, Chen X, et al. Rethinking dual-stream super-resolution semantic learning in medical image segmentation. IEEE Trans Pattern Anal Mach Intell, 2024, 46(1): 451-464.
|
22. |
Zhu K, Wu J. Residual attention: a simple but effective method for multi-label recognition// Proceedings of the IEEE/CVF International Conference on Computer Vision. Los Alamitos: IEEE Computer Society, 2021: 184-193.
|
23. |
Lanchantin J, Wang T, Ordonez V, et al. General multi-label image classification with transformers// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2021: 16478-16488.
|
24. |
He A, Wang K, Li T, et al. H2Former: an efficient hierarchical hybrid transformer for medical image segmentation. IEEE Trans Med Imaging, 2023, 42(9): 2763-2775.
|
25. |
Wang Q, Wu B, Zhu P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society, 2020: 11534-11542.
|
26. |
Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module// Proceedings of the European Conference on Computer Vision (ECCV). Cham: Springer, 2018: 3-19.
|