1. |
張杰, 丁祥龍, 龍妍, 等. 1990~2019年中國2型糖尿病發病趨勢及2020~2030年預測. 華中科技大學學報, 2024, 53(3): 315-320.
|
2. |
楊會芳, 袁璐, 吳結鳳, 等. 基于國家基本公共衛生服務體檢的中老年人2型糖尿病風險預測模型構建. 四川大學學報, 2024, 55(3): 662-670.
|
3. |
Ma C X, Ma X N, Guan C H, et al. Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc Diabetol, 2022, 21(1): 74.
|
4. |
Loh H W, Xu S, Faust O, et al. Application of photoplethysmography signals for healthcare systems: An in-depth review. Comput Methods Programs Biomed, 2022, 216: 106677.
|
5. |
Zanelli S, El Yacoubi M A, Hallab M, et al. Type 2 diabetes detection with light CNN from single raw PPG wave. IEEE Access, 2023, 11: 57652-57665.
|
6. |
Ramasahayam S, Koppuravuri S H, Arora L, et al. Noninvasive blood glucose sensing using near infra-red spectroscopy and artificial neural networks based on inverse delayed function model of neuron. J Med Syst, 2015, 39(1): 1-15.
|
7. |
Li G, Watanabe K, Anzai H, et al. Pulse-wave-pattern classification with a convolutional neural network. Sci Rep, 2019, 9(1): 1-11.
|
8. |
Moreno E M, Lujan M J, Rusiol M T, et al. Type 2 diabetes screening test by means of a pulse oximeter. IEEE Trans Biomed Eng, 2017, 64(2): 341-351.
|
9. |
Avram R, Tison G, Kuhar P, et al. Predicting diabetes from photoplethysmography using deep learning. J Am Coll Cardiol, 2019, 73(9): 16.
|
10. |
Avram R, Olgin J E, Kuhar P, et al. A digital biomarker of diabetes from smartphone-based vascular signals. Nat Med, 2020, 26(10): 1576-1582.
|
11. |
Ding C, Xiao R, Do D H, et al. Log-spectral matching gan: Ppg-based atrial fibrillation detection can be enhanced by gan-based data augmentation with integration of spectral loss. IEEE J Biomed Health Inform, 2023, 27(3): 1331-1341.
|
12. |
Li J, Chen Z, Cheng L, et al. Energy data generation with wasserstein deep convolutional generative adversarial networks. Energy, 2022, 257: 124694.
|
13. |
Sisman B, Zhang M, Sakti S, et al. Adaptive wavenet vocoder for residual compensation in gan-based voice conversion// 2018 IEEE SLT. Athens: IEEE, 2018: 282-289.
|
14. |
Habashi A G, Azab A M, Eldawlatly S, et al. Generative adversarial networks in EEG analysis: an overview. J Neuroeng Rehabil, 2023, 20(1): 40.
|
15. |
Zhang A, Su L, Zhang Y, et al. EEG data augmentation for emotion recognition with a multiple generator conditional Wasserstein GAN. Complex Intell Syst, 2021: 1-13.
|
16. |
Tian C, Ma Y, Cammon J, et al. Dual-encoder VAE-GAN with spatiotemporal features for emotional EEG data augmentation. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 2018-2027.
|
17. |
Chang J, Hu F, Xu H, et al. Data augmentation of wrist pulse signal for traditional chinese medicine using Wasserstein GAN// Proceedings of the 2nd International Symposium on Artificial Intelligence for Medicine Sciences. New York: Association for Computing Machinery, 2021: 426-430.
|
18. |
Sohn J, Shin H, Lee J, et al. Validation of electrocardiogram based photoplethysmogram generated using U-net based generative adversarial networks. J Healthc Inform Res, 2024, 8(1): 140-157.
|
19. |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014, 2: 2672-2680.
|
20. |
Abu-Srhan A, Abushariah M A M, Al-Kadi O S. The effect of loss function on conditional generative adversarial networks. J King Saud Univ Comput Inf Sci, 2022, 34(9): 6977-6988.
|
21. |
Huang L, Li L, Wei X, et al. Short-term prediction of wind power based on BiLSTM–CNN–WGAN-GP. Soft Comput, 2022, 26(20): 10607-10621.
|
22. |
Ullah S, Pirahandeh M, Kim D H. Self-attention deep ConvLSTM with sparse-learned channel dependencies for wearable sensor-based human activity recognition. Neurocomputing, 2024, 571: 127157.
|
23. |
Liang Y, Chen Z, Liu G, et al. A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in China. Sci Data, 2018, 5(1): 1-7.
|